Funding

This page displays the ARTES Invitation To Tenders (ITTs) which are published on ESA-STAR. If you are looking for a specific element select from the list provided and click on the Apply button to start the search and display the results.

Funding of the individual Prime or subcontractors, for ARTES Core Competitiveness and ARTES Applications activities, is subject to authorisation of the required ARTES budget by the related National Delegations. Therefore, bidding teams are requested to inform their National Delegation(s) of their intention to participate in funded activities already before submitting a proposal.

The official information platform for providing potential bidders all the relevant documentation and details concerning the intended and issued Invitations To Tender (ITTs) for Open Competitions and Direct Negotiations is ESA-STAR - managed and operated by the ESA Procurement Department.

  • MAGNETIC BEARING SYSTEMS FOR HIGH-SPEED ROTARY MECHANISMS (ARTES 4.0 AT 4E.092)

    Objective: The objective of the activity is to design, manufacture and test a magnetic bearing system for high-speed rotary mechanisms in telecommunication spacecraft applications (e.g. reaction wheels or thermal control pumps and compressors). Targeted Improvements:- Increase rotation speed by a factor of 2 (resulting in higher angular momentum capability). - Increase lifetime by a factor of 2 (due to contact-less bearings and no lubrication)…

  • IN-ORBIT DEMONSTRATION OF A NARROW BAND INTERNET OF THINGS (NB-IOT) INTER-SATELLITE DATA RELAY (ARTES 4.0 SPL 5G/6G 3E.023)

    The objective of this activity is to proof that a standardised existing solution such as NB-IOT can be used for satellite-to-satellite low data rate communications. Targeted Improvements: Introduce world's first standardised intersatellite data relay solution based on 3GPP NTN standards, opening up a new market for new companies and telecom operators toprovide data solutions to Earth Observation missions via intersatellite data relay. Des…

  • ARTES 4.0 SPACE SYSTEMS FOR SAFETY AND SECURITY (4S) ROLLING WORK PLAN 2020-2021

    1. Introduction.Four new technology and product development activities are added in 2021, that have already been identified as useful to the foreseen development of next-generation 4S solutions over the coming years. These work plan activities will be issued under the legal framework of the ARTES 4.0 Strategic Programme Line (SPL) Space Systems for Safety and Security (4S).2. ImplementationPhasing: phasing of the contractual activities may be…

  • ARTES 4.0 SPL 4S 7B.077 - EMERGENCY LIGHTS FOR CARS IN DISTRESS WITH INTEGRATED TERRESTRIAL AND SATELLITE CONNECTIVITY (ON DELEGATION REQUEST)

    The objective of the activity is to develop and test a prototype of the emergency car light device with direct to satellite communication capability in an emulated environment in laboratory.Procurement Policy: C(1) = Activity restricted to non-prime contractors(incl. SMEs). For additional information please go to:…

  • MODEL-BASED APPROACH FOR SOFTWARE DEFINED PAYLOAD APPLICATIONS (ARTES AT 5A.089)

    The objective of the activity is to design, develop and test key building blocks for software defined payloads using a model-based approach. At least six building blocks implementing telecommunication application functions (e.g. signal processing, signal filtering, encryption, compression, etc.) shall be developed. At least two use case applications shall be developed, and the performance tested to validate the approach.Targeted Improvements:…

  • 5G NON-TERRESTRIAL NETWORK SECURE TWO-WAY RANGING FOR LEO SATELLITES (ARTES 4.0 SPL 5G/6G 3F.022)

    Study, design and validate a secure two-way ranging protocol relying on 5G Non-Terrestrial Network (NTN) in LEO.Targeted Improvements:Enable secure two-way ranging via future LEO 5G satcom services for target applications such as IoT sensors.Description:All GNSS systems are principally based on one-way ranging and as such they are fundamentally vulnerable to spoofing and/or meaconing attacks, even in the presence of GNSS security mechanisms su…

  • IN-ORBIT EXPERIMENT OF BEYOND LINE-OF-SIGHT GROUND TO LEO LINKS USING IONOSPHERIC REFRACTION (ARTES AT 3E.002) (ON DELEGATION REQUEST)

    The objective of the activity is to test the performance of beyond line-of-sight narrow-band communication links between ground andLEO satellites in operational conditions. One of the key aspects of the experiment is the effect of ionospheric refraction and reflection as an enabler of satellite links beyond the line of sight. The activity will include the development of a small payload and aground terminal. Targeted Improvements:Enabling new s…

  • ADAPTIVE THERMAL CONTROL OF TELECOM SATELLITES (ARTES 4.0 AT 4D.082) (RE-ISSUE)

    The objective of the activity is to develop and test a breadboard of an electrophoretic panel enabling adaptive thermal control on telecommunication spacecraft. Targeted Improvements:-Enabling technology to allow adaptive control of radiative surfaces.-Reduction in heater power of 40% and in radiator size of 30%. Description: Traditional thermal design balances emissivity and absorption parameters based on surface materials and/or coatings sel…

  • DVB ENERGY SAVING DELIVERY OF CONTENT (ARTES AT 3A.201)

    Objective: The objective of the activity is to design, develop and test protocols and system level approaches for energy saving video content distribution in satellite telecommunication networks. A testbed will be developed to evaluate the energy savings achievedin real networks considering the different video codecs, air interfaces and video quality. The output shall be available to the DVBstandardisation EADC (Energy Aware Delivery and Consu…

  • FREQUENCY COORDINATION DEMONSTRATOR FOR NON-GEOSTATIONARY SATELLITE SYSTEMS (ARTES AT 3A.153) (RE-ISSUE OF ITT 1-11179)

    The objective of the activity is to develop and test a demonstrator of a frequency coordination system that manages access to spectrum among different non-geostationary satellite systems. The concept will be implemented and tested as a real-time emulator to be developed as part of the activity.Targeted improvements: Improving the achievable throughput by 50% with respect to partitioning the frequency band.Description:The increasing number of c…

  • CATHODE FOR OXYGEN-RICH ENVIRONMENT (ARTES 4.0 AT 4B.172)

    The objective of the activity is to develop, manufacture and test a cathode for use as a neutraliser in electric propulsion systemsand suitable for operation in an oxygen-rich environment for a long duration of time (e.g. >5 years).Targeted Improvements:Enabling cathode capable of operating in an oxygen-rich environment for more than a few hours.Description: Platforms operating in Very Low Earth Orbit (VLEO) require prolonged and/or continu…

  • W-BAND RF PASSIVE HARDWARE FOR HIGH THROUGHPUT TELECOMMUNICATION PAYLOADS (ARTES 4.0 AT 5C.502) - RE-ISSUE

    The objective of the activity is to design, manufacture and test low-loss W-band RF passive equipment (filters, multiplexers and transmission lines) for future very high throughput telecommunication payloads. Targeted Improvements: Enabling technology for W-band payloads. Description: W-band has the potential to provide the feeder link capacity needed for future Very High Throughput Satellites (VHTS). The frequency allocation for this band all…

  • BATTERIES BASED ON EUROPEAN COMMERCIAL OF THE SHELF BATTERY CELL TECHNOLOGY (ARTES AT 4F.145) (ON DELEGATION REQUEST)

    The objective of this activity is to develop, design, manufacture and test a battery with European Commercial Off The Shelf (COTS) battery cells for telecom space applications. Targeted Improvements:- At least 20% mass reduction at battery level;- Enabling European independency and continuity of technology sourcing. Description: Current state-of-the-art space Li-Ion cell technology can provide around 180 Wh/kg, while Li-Ion COTS cell technolog…

  • PRINTED CIRCUIT BOARD TECHNOLOGY FOR AUTOMOTIVE CONFORMAL ANTENNAS (ARTES 4.0 AT 7C.083)

    The objective of the activity is to investigate, develop and test conformal Printed Circuit Board (PCB) technology using a novel approach, such as additive manufacturing to "print" the antenna for the automotive market. Targeted Improvements: Enabling conformal board of patches with distribution feed and integration of amplifiers on the reverse side, able to follow the shape of a car roof. Description: Conventional PCB technology is…

  • POWER EFFICIENT USER PLANE FUNCTIONS FOR B5G SMALL SATELLITE PLATFORMS (ARTES 4.0 SPL 5G/6G 3F.016)

    Objective:The objective of this activity is to develop and test a power efficient 5G User Plane Function (UPF) prototype, implemented onto space enabled hardware platforms. The development will leverage concrete laboratory results of various RAN splits and compensate for their impact on the 5G protocol stack. Finally, system integration with a ground segment control plane will be tested, over emulated LEO constellationsTargeted Improvements:-…

  • BUILDING BLOCKS FOR DIGITAL TWIN OF ATTITUDE AND ORBIT CONTROL SYSTEM EQUIPMENTS (ARTES 4.0 AT 4C.068)

    The objective of the activity is to develop and test a cyber-physical modelling for a Digital Twin of AOCS sensors. A multi-physic model-based Digital Twin can be used to perform on-board self-calibration employing data-driven techniques and simplify the ground verification of new satellite platforms by having a direct dispersion of the different parameters, hence reducing complex Monte Carlodispersions. Targeted Improvements: Enabling on-boar…

  • DIRECT CHIP COOLING WITH PULSATING HEAT PIPES (PHPS) (ARTES AT 4D.086)

    The objective is to develop and test a direct chip to baseplate thermal concept based on Pulsating Heat Pipes that reduces design complexity and yet widens the operating temperature range and thermal transport performance.Targeted Improvements: - Improved heattransfer performance to at least 60 watts per chip.- Operation in adverse vertical gravity and below -40C- Reduced manufacturing complexity in chip to unit baseplate thermal transport com…

  • ARTES 4.0 TECHNOLOGY AND PRODUCT DEVELOPMENTS ACTIVITY - STANDARD CALL FOR PROPOSALS

    This Call for Proposals covers the industry initiated activities for the four Programmes lines identified below:ARTES Core Competitiveness Generic ProgrammeLine- Component B: Competitiveness GrowthARTES Strategic Programme Line Space for 5G/6G and Sustainable Connectivity ARTES Strategic Programme Line Space Systems for Safety and Security (4S) ARTES Strategic Programme Line Optical and Quantum Communication - ScyLight. The participating stat…

  • ANTENNA FOR UNIVERSAL SATELLITE-TERRESTRIAL 5G LAND MOBILE TERMINALS (ARTES SPL 5G 7C.061) (UPON DELEGATION REQUEST)

    Upon Delegation Request (*) The objective of the activity is to develop and validate a mobile terminal antenna that supports satellite connectivity and terrestrial 5G. A prototype of the antenna will be manufactured and tested in a laboratory environment. Targeted Improvements: Terminal size, weight and power reduction (30 to 50%) achieved by integrating 5G satellite and terrestrial antenna systems.The integration of satellite communications…

  • ARTIFICIAL INTELLIGENCE-BASED SYSTEM FOR AUTONOMOUS ON-BOARD FAILURE ISOLATION, RECOVERY, AND RESOURCE OPTIMISATION FOR TELECOMMUNICATION CONSTELLATIONS (ARTES AT 4A.099) (ON DELEGATION REQUEST)

    The objective of the activity is to design, develop and validate an on-board software relying on Artificial Intelligence that autonomously detect, isolate and recover failures at spacecraft level and that performs resource optimisation at constellation level to recover and improve the overall availability of the service.Targeted Improvements: - Enabling autonomous FDIR management at the level of constellations.- Enabling autonomous performance…

  • ROLLABLE AND DEPLOYABLE REFLECT-TRANSMIT ARRAY ANTENNAS (ARTES AT 5B.237)

    Objective: The objective is to develop, manufacture and test a breadboard of a lightweight, rollable, passive reflect-array or transmit-array deployed antenna. This shall operate at L- or Sband and have an aperture area of at least 5 square metre.Targeted Improvements: Enabling technology for large aperture deployable antennas based on a simple, reliable and robust mechanical deployment scheme, not existing today in ESA member states.Descripti…

  • BUFFERBLOAT FREE AND CONGESTION RESILIENT SATCOM NETWORKS (ARTES AT 6B.129)

    The objective of this activity is to design, implement and test active queuing management and packet scheduling techniques at the user terminals and ground equipment, so that the SATCOM network continues to provide seamlessly an acceptable throughput and latency to users under any congestion situation.Targeted Improvements:- Enabling a responsive and fair SATCOM network in any traffic andresources availability situation.- Keeping the addition…

  • WDM LASER SOURCES AT 1064NM (ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT 5F.018) - RE-ISSUE

    Objective: The objective of the activity is to develop low noise and small footprint semiconductor laser diodes at 1064nm compatible with WDM operation and the associated low-power consumption driving electronics. The activity shall also investigate technologicaloptions to further reduce the footprint and the power consumption of the low-power section of an optical transmitter at 1064nm (e.g., integration of multiple lasers diodes, optical mod…

  • 5G AUTOMOTIVE ANTENNA PROTOTYPE AND DEMONSTRATION (ARTES 4.0 SPL 5G/6G 7C.084)

    The objective is to design and demonstrate a new class of low-profile and conformal antennas, providing seamless connectivity for 5G services on vehicles.Targeted Improvements:Enabling technology Satellite antennas compatible with the constrains of the automotive markets (in terms of aesthetics, aerodynamics and safety), whilst providing seamless connectivity, are currently not available.Description:The automotive sector is a crucial target gr…

  • COMPACT VHF-BAND DIPLEXER FOR SMALL SATELLITE VHF DATA EXCHANGE PAYLOADS (ARTES AT 5E.030)

    The objective of the activity is to design, manufacture and test a compact transmit-receive diplexer engineering model with high isolation, low loss and power handling as required for full duplex VHF data exchange payloads.Targeted Improvements: Enabling technology for full duplex VHF data exchange system (VDES) payloads on small satellite platforms.Description: The World Radiocommunication Conference in 2019 allocated maritime VHF frequencies…