Funding

This page displays the ARTES Invitation To Tenders (ITTs) which are published on ESA-STAR. If you are looking for a specific element select from the list provided and click on the Apply button to start the search and display the results.

Funding of the individual Prime or subcontractors, for ARTES Core Competitiveness and ARTES Applications activities, is subject to authorisation of the required ARTES budget by the related National Delegations. Therefore, bidding teams are requested to inform their National Delegation(s) of their intention to participate in funded activities already before submitting a proposal.

The official information platform for providing potential bidders all the relevant documentation and details concerning the intended and issued Invitations To Tender (ITTs) for Open Competitions and Direct Negotiations is ESA-STAR - managed and operated by the ESA Procurement Department.

  • KU AND KA DUAL-BAND TRANSMIT ACTIVE PHASED ARRAY (ARTES AT 5B.236)

    The objective of this activity is to design, develop and test enabling technologies for multi-frequency transmit active antennas. This will include antenna radiating elements, beamforming techniques (analogue vs hybrid), active elements customised in order to cover both the Ku and Ka transmit frequency bands, integrated into a breadboard. Targeted Improvements: Enabling dual Ku and Ka-band transmit active phased arrays. Description: Active ant…

  • MULTI-BEAM RECEIVE ANTENNA FOR SATELLITE-BASED AIR TRAFFIC SURVEILLANCE (ARTES 4.0 AT 5B.225)

    Objective: The objective of the activity is to design, implement and test a scaled engineering model with critical functions of a multi-beam receive antenna for satellite-based air traffic surveillance in the frequency range 950 - 1100 MHz, taking into account narrow beamwidth, directivity and mechanical constraints. Targeted Improvements:- Two-fold increase, compared to the state of the art, in the number of beams covering the visible Earth (…

  • DIGITAL TWIN OF A HIGH VOLTAGE MODULE FOR ELECTRONIC POWER CONDITIONERS (EPC) OR POWER PROCESSING UNITS (PPUS) (ARTES AT 4B.183)

    The objective of the activity is to develop a digital model of a high voltage module typically used in power processing units for electric propulsion or travelling wave tube amplifiers. This model or "digital twin" shall enable an in-depth evaluation which is today only possible by test.Targeted Improvements: Enabling a new approach to achieve innovation acceleration of high voltage module design and test, leading to:- decrease of th…

  • ATMOSPHERIC TURBULENCE EFFECT MITIGATION BY SECONDARY MIRROR ACTUATION (ARTES 4.0 SL SPL 6C.020)

    Objective: The objective of this activity is to simplify optical feeder links systems in Optical Ground Stations by replacing the secondary mirror with an active (deformable) one and to demonstrate the improvement in transmission budget and complexity. Targeted Improvements: 30% increased optical throughput in optical communication ground stations. 20% reduction of complexity in adaptive optics and beam pre-distortion in feeder-link systems. R…

  • IMPLEMENTATION OF SOFTWARE MITIGATION SOLUTIONS FOR RADIATION-INDUCED SINGLE EVENT EFFECTS (ARTES 4.0 AT 5C.490)

    The objective of the activity is to de-risk software mitigation techniques for radiation effects on a family of high-performance processors embedded in System on Chip (SoC) components. The activity will identify, on one or more processors of interest for the industry, radiation-induced failure modes and will implement appropriate software mitigation techniques with reuse or development of small FPGA IPs if needed. Targeted Improvements: Enable…

  • DUAL BAND KU- AND KA-BAND POWER AMPLIFIER FOR FUTURE FLEXIBLE PAYLOADS (ARTES AT 5C.515)

    The objective of the activity is to design, manufacture and test an engineering model of a multi-band (Ku and Ka-band) integrated power amplifier for application in Lower Earth Orbit satellites, enabling seamless flexibility and reconfigurability for active antenna arrays. Targeted Improvements: Enabling technology for seamless Ku- and Ka-band flexible payloads:- reduces mass and volume by 50%,- improves reliability, bill of material and quali…

  • DATA, CONTROL AND SIGNALLING PROTOCOLS FOR SPECTRUM SHARING AMONG CO-EXISTING SATELLITE INTERNET-OF-THINGS NETWORKS (ARTES AT 3C.044) (ON DELEGATION REQUEST)

    The objective of the activity is to develop and test data, control and signalling protocols to enable spectrum sharing among co-existing satellite Internet-of-Things (IoT) networks for new frequency allocations (i.e. below 5 GHz according to resolution 812 WRC 2019) that are on the agenda of the World Radio-Communication Conference (WRC) in 2027. The activity will include a measurement campaign to quantify the interference environment using ex…

  • RELIABLE SIMPLE ELECTRICAL INSULATION FOR SATCOM PLATFORMS (ARTES AT 4F.172)

    The objective of the activity is to test electrical insulation methods to replace reliable electrical insulation by reliable simpleelectrical insulation and to provide inputs to guidelines to ECSS-E-ST-20C Rev2.Targeted Improvements:Mass, volume, manufacturing time reduced by a factor of 2 compared to current reliable insulation technologies.Description: Double insulation rules lead tooversize electrical architectures to make them robust to s…

  • REAL-TIME DEMONSTRATION OF ERASURE CORRECTING CODE FOR OPTICAL FEEDER LINKS (ARTES 4.0 SL SPL 3C.048)

    The objective of the activity is to develop and test a real time 100 Gbps erasure code (both coder and decoder components) for optical feeder link protection.Targeted Improvements:Ensure high availability nominally required in feeder links by exceeding 99.5% of link availability due to atmospheric turbulence.Description:The use of terrestrial COTS optical transceivers in optical ground-space and space to space link will enable high throughput…

  • DRAG AND ATOMIC OXYGEN RESISTANT CARBON FIBRE REINFORCED POLYMER FOR VERY LOW EARTH ORBIT TELECOM SATELLITES (ARTES AT 4A.092) (ON DELEGATION REQUEST)

    The objective of the activity is to develop and test a coating material (e.g. for substrates such as carbon fibre reinforced polymer, polymers, etc) with improved atomic oxygen and drag resistance to be used on the external satellite surfaces for very low Earth orbit applicationsTargeted Improvements:- Enabling technology not existing today; allowing telecommunication satellites with conventional construction materials in much lower orbits tha…

  • NGSO SIMULATOR FOR 5G VEHICLE-TO-EVERYTHING (V2X) (ARTES 4.0 SPL 5G/6G 3A.183)

    Objective: The objective of the activity is to develop and test NGSO networking techniques for 5G V2X services. The developments will be implemented and verified in a simulator modelling realistic system scenarios of 5G LEO satellites. Targeted Improvements: Enabling the provision of 5G V2X services by satellite. Description:Due to their low altitudes, LEO satellite systems may offer low-latency 5G connectivity that, paired with on-board edge…

  • HIGH BANDWIDTH INTERFACE RADIATION MITIGATION IP CORE FOR PROGRAMMABLE LOGIC DEVICES (ARTES 4.0 AT 5C.489)

    The objective of the activity is to develop, implement and test a 100 Gbps class interface radiation mitigation IP core for programmable logic devices for application in Low Earth and Geostationary Orbits. This includes hardware radiation characterisation and testing. Targeted Improvements: 3 to 4 times improvement of high-speed serial link data rate (from 32 Gbps to 112 Gbps) under radiation conditions. Description: State of the art programma…

  • END-TO-END ADAPTIVE OPTICS BI-DIRECTIONAL MODELLING TOOL FOR OPTICAL FEEDER LINKS (ARTES 4.0 SL SPL 6C.035) - EXPRO+

    Objective: This activity aims at developing a modular software tool allowing to simulate the improvement from employing adaptive optics (AO) systems in bidirectional optical ground station (OGS) to satellites optical communication and quantum links scenarios (e.g. GEO, LEO, MEO). Targeted Improvements: 50% improvement of design time and computation time to dimension optical communication systems operating through atmospheric turbulence enhance…

  • L-BAND GALLIUM NITRIDE LOW NOISE AMPLIFIER-BASED RF FRONT-END (ARTES AT 5C.465) (ON DELEGATION REQUEST)

    The objective of the activity is to design a compact L-band RF front-end for telecom applications which is based on a GaN Low NoiseAmplifier (LNA). A breadboard of a GaN microwave monolithic integrated circuit will be developed and tested. The RF front-end including the filtering function shall be modelled.Targeted Improvements: up to 30% mass and volume saving of the RF front-end (LNA and filtering) and 20 dB improvement of the LNA dynamic ra…

  • MULTI-CONSTELLATION CONNECTED TERMINAL PROTOTYPE FOR FIXED WING UNMANNED AERIAL VEHICLES (UAV) (ARTES 4.0 SPL 4S 7A.075)

    The objective of this activity is to design, develop, test in a lab environment and over representative conditions a multi-constellation broadband UAV terminal prototype, i.e. a fixed-wing UAV terminal prototype including modem and RF front-end, that transmits via multiple beams towards multiple satellite orbits (GSO or NGSO) high data rate payload data to both commercial and governmental frequency bands.

  • NETWORK EMBEDDED HYBRID CONNECTIVITY OVER TERRESTRIAL AND SATELLITE 5G ACCESS (ARTES 4.0 SPL 5G/6G 3F.012)

    Objective: The objective of this activity is to design, develop and test a 5G system to support upper layer Access Traffic Switching, Steering and Splitting (ATSSS) mechanisms relating a User Equipment (UE) data session across dual terrestrial and satellite 5G access, as well as over dual 5G satellite access.Targeted Improvements:- Enable dual 3GPP access- Significant part reduction - Network and device centric system- Enable 5G Core Network w…

  • AUTONOMOUS HEALTH MONITORING FOR TELECOMMUNICATION PLATFORM MECHANISMS (ARTES 4.0 AT 4E.089)

    The objective of the activity is to develop and test a computer-assisted approach for in-situ operational health monitoring and anomaly detection for mission-critical platform mechanisms (e.g., reaction wheels, solar array drive mechanisms, antenna pointing mechanisms, laser communication terminals, etc.) in telecommunication spacecraft. Rather than relying on telemetry data, this activity will develop an approach using the full signal and sen…

  • DEVELOPMENT OF A TESTBED TO ASSESS SPACECRAFT MATERIALS ROBUSTNESS AGAINST ATOMIC OXYGEN IN VERY LOW EARTH ORBIT ENVIRONMENT (ARTES AT 4A.101)

    The Objective: The objective of the activity is to design, manufacture a testbed to determine materials behaviour of atomic oxygen fluence exposure representative in Very Low Earth Orbit (VLEO) environment. With the help of the testbed, in a second step, an aerodynamic and oxygen fluence resistant coating will be developed and evaluated as needed for protection of exposed parts of the spacecraft to the VLEO environment.Targeted Improvements: E…

  • PROTOCOL STACK ENABLING VOICE-CALL USING NON-TERRESTRIAL IOT WAVEFORM (ARTES 4.0 SPL 5G/6G 3F.013)

    The objective of this activity is to develop the software protocol stack for Release 18 enhancements related to 5G New for Radio (NR) for Non-Terrestrial Networks. The software protocol stack development shall be based on a testbed considering both the User Equipment (UE) and g-NodeB (gNB) features and operational procedures.Targeted Improvements:Enable 5G NR NTN system performance simulations with the latest Release 18 modifications.Descripti…

  • BACKGROUND LIGHT AND ATMOSPHERE METROLOGY FOR QUANTUM KEY DISTRIBUTION AT URBAN LOCATIONS (4S SAGA)

    Development of tools and hardware and the execution of a measurement campaign for background light and atmosphere conditions for Quantum Key Distribution (QKD) at urban location (major cities and metropolitan areas) under ARTES 4.0 Space Systems for Safety and Security (4S) Strategic Programme Line. These measurement results are an important check point to validate the design of the SAGA system. The background light and atmosphere metrology ac…

  • 5G AUTOMOTIVE MAKERSPACE (ARTES 4.0 SPL 5G/6G 3F.010)

    Objective: The objective of this activity is to design, develop and test automotive prototypes following 5GAA workplans and increase the number of companies working on automotive satellite communications by 30%. Targeted Improvements: Novel hand-over methods between satellite and terrestrial networks supporting use cases as formulated by 5GAA and miniaturised automotive terminal baseband units.Description: The 5G Automotive Association (5GAA)…

  •  ARTES 4.0 SPL 4S 5A.087 REGENERATIVE TRANSPONDER WITH BUILT-IN SIGNAL SECURITY PROCESSING FOR USER AUTHORISATION 

    The objective of the activity is to develop technology to prevent non authorised usage of satellite communication bandwidth throughthe implementation and enforcement of on-board authentication protocols. During this activity+ a breadboard that implements such protocol will be developed in a laboratory environment.

  • HANDOVER ENGINE AND TESTBED FOR SATELLITE-BASED 5G NON-TERRESTRIAL NETWORKS (NTNS) (ARTES 4.0 SPL 5G/6G 3F.015)

    The objective of this activity is to develop a machine learning (ML) engine that optimises handover between two different 5G networks, where at least one of them is a satellite-based non-terrestrial network (NTN). The activity will also provide the testbed to assess the handover key performance indicators in a laboratory environment.Targeted Improvements:Identify and avoid higher risk handovers improving thus the handover success rate to reach…

  • MULTI-PLATFORM DUAL BAND CONFIGURABLE POWER AMPLIFIER FOR AVIONIC TERMINALS (ARTES AT 7C.052) (ON DELEGATION REQUEST)

    Objective: The objective of the activity is to develop, manufacture and test a breadboard of a L- and C-band configurable power amplifier to enable dual band operation of avionic terminals. It shall demonstrate 200W peak power per channel and a 10dB dynamic rangewith a constant average power added efficiency of at least 50% for both bands, without compromising linearity performance. The breadboard shall include driver, main and peak amplifier,…

  • FUTURE GEOSTATIONARY AMATEUR SATELLITE COMMUNICATIONS PAYLOAD (ARTES FPE 1A.126) - EXPRO PLUS

    ESA will support an initiative to define a future amateur satellite payload in geostationary orbit. ESA proposes that this activitywill be implemented by a combination of collaborative internal, industrial, and amateur efforts, all within the financial envelope as indicated. The activity shall consolidate requirements from the amateur and commercial satellite industry, trade-off several payload options, address the future user segment, develop…