Funding

This page displays the ARTES Invitation To Tenders (ITTs) which are published on ESA-STAR. If you are looking for a specific element select from the list provided and click on the Apply button to start the search and display the results.

Funding of the individual Prime or subcontractors, for ARTES Core Competitiveness and ARTES Applications activities, is subject to authorisation of the required ARTES budget by the related National Delegations. Therefore, bidding teams are requested to inform their National Delegation(s) of their intention to participate in funded activities already before submitting a proposal.

The official information platform for providing potential bidders all the relevant documentation and details concerning the intended and issued Invitations To Tender (ITTs) for Open Competitions and Direct Negotiations is ESA-STAR - managed and operated by the ESA Procurement Department.

  • LOW COMPLEXITY SOLAR CELLS FOR HIGH VOLUME PRODUCTION (ARTES AT 4F.170)

    The objective of this activity is to develop, manufacture and test new solar cells with new structures, new processes that will increase the throughput.Targeted Improvements: Doubling the production throughput by the introduction of innovative processes with anew solar cell designDescription: Currently the demand of highly efficient solar cells is exceeding the supply and requires to bemuch more competitive. Simplified manufacturing processes…

  • SUPPORT TO QUIC STANDARDISATION (ARTES FPE 1D.019)

    Satellite communication links have specific characteristics that undermine the performance of commonly used Internet protocols, notably TCP, in part because performance over satellite was not a major consideration during the development of those protocols. Specifically, the long propagation delay imposed by GEO satellite links and their asymmetric nature lead to poor TCP performance. Unless addressed, this can result in a poor user experience,…

  • AGILE ULTRA HIGH FREQUENCY (UHF) TO KU-BAND TRANSCEIVER FOR COMMUNICATIONS IN CRISIS SITUATIONS (ARTES 4.0 SPL 4S 7C.092)

    The objective of this activity is to design and develop a UHF/Ku transceiver prototype for communications used by governmental users (i.e.+ first responders) and Non-Governmental Organisations (NGOs) within an area of crisis+ compatible with all Ku-band service providers.

  • MULTIFREQUENCY TRANSMIT ACTIVE PHASED ARRAYS FOR GROUND TERMINALS CONNECTED WITH MULTI-ORBIT NON GEOSTATIONARY ORBIT SATELLITES (ARTES AT 7A.078)

    The objective of this activity is to design, develop and test enabling technologies for multi frequency transmit active antenna. This will include antenna radiating elements, beamforming techniques and active elements designed to cover Ku and Ka transmit frequency bands for ground terminals connected to non-geostationary multi-orbit satellites.Targeted Improvements: - Mass and size reduction by 30% by sharing components between frequency bands…

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT: SCINTILLATION MITIGATION TECHNIQUES BASED ON FEMTOSECOND PULSES FOR OPTICAL FEEDER UPLINKS (5G.014/SL.033) (ON DELEGATION REQUEST)

    Objective:The objective of the activity is to develop scintillation mitigation techniques based on femtosecond pulses for optical feeder uplinks. Their performance will be experimentally verified using the fine acquisition sensor on Alphasat's laser communication terminal.Targeted Improvements:25dB link budget improvement under strong turbulence conditions.Description:The adoption of optical feeder links will largely depend on their abili…

  • PREDICTIVE QUALITY OF SERVICE (QOS) PROTOCOL FOR NON-TERRESTRIAL NETWORKS IN SUPPORT OF AUTOMOTIVE SERVICES (ARTES 4.0 SPL 5G/6G 3F.023)

    Objective:This objective of this activity is to develop and test an extended protocol to address the support of predictive Qualityof Service (QoS) in Non-Terrestrial Networks (NTNs). The activity will also undertake the necessary investigation and selection of data-driven algorithms to automate predictive QoS in NTN.Targeted Improvements:Features enhancement to align NTN solutions in an integrated NTN/TN ecosystem in support to automotive serv…

  • BEAMFORMING BASED ON LOW-RESOLUTION, LOW POWER CONSUMPTION ANALOGUE TO DIGITAL CONVERTERS (ARTES AT 5C.512) (ON DELEGATION REQUEST)

    The objective of the activity is to develop a beamforming concept based on low resolution and low power consumption Components of The Shelf (COTS) Analogue-to-Digital Converters (ADC). The developed concept will be implemented and tested in a combined software and hardware testbed. Targeted improvements: Improved energy efficiency by >50% thanks to the use of low resolution and low power ADC when compared to 10-12 bit resolution ADCs. Descr…

  • Q/V BAND PHASED ARRAY ANTENNAS FOR GROUND TERMINALS (ARTES AT 7C.070) (ON DELEGATION REQUEST)

    The objective of this activity is to develop and test a receive Q-band prototype, and a transmit V-band beamformer, both supporting2 beams scanning in a large field of view for the mobility market (e.g. aeroplanes, buses, trains). Targeted Improvements:Enabling technology for Q/V band user terminals for the mobility market (aeroplanes, buses, trains). Description:Today, terminal antennas are mainly exploiting the Ka- and the Ku-frequency bands…

  • QUANTUM KEY DISTRIBUTION SPACE-TO-FIBRE ARCHITECTURE BASED ON TWIN-FIELD PROTOCOL (ARTES 4.0 SPL 4S 6C.047 )

    The objective of this activity is to design, develop and test a twin field Quantum Key Distribution (QKD) architecture, to enable end users to receive keys without compromising security when located up to several hundred kilometres away from the satellite opticalground station.

  • MACHINE LEARNING TECHNIQUES FOR DATA RATE REDUCTION (ARTES AT 7B.079)

    The objective of this activity is to design, implement and test Machine Learning (ML) and Artificial Intelligence (AI) based data rate reduction techniques for ground terminals. A testbed will be developed to assess performance savings in terms of throughput, complexity and power consumption.Targeted Improvements: Decrease the transmitted data rate by at least 40% for specific applicationsDescription: Many types of data transmissions and recep…

  • NUTATION BASED FINE TRACKING SYSTEM FOR SPACE OPTICAL COMMUNICATION TERMINALS (ARTES 4.0 SL SPL 5F.049)

    Objective: The objective of the activity is to develop a fine tracking system with reduced complexity and size. The fine tracking of optical communication terminals shall be based on Rx-fibre or Rxbeam nutation for probing the point spread function at the focal plane and will replace the need for a tracking sensor. Targeted Improvements: Reduce the size weight, power and cost of space opticalcommunication terminals by 30%. Description: Nutatio…

  • MASS MEMORY UNIT WITH 100 GIGABIT PER SECOND WRITE RATE CLASS FOR LOW EARTH ORBIT COMMUNICATION APPLICATIONS (ARTES AT 5C.498) (ON DELEGATION REQUEST)

    The objective of this activity is to design, manufacture and test a memory unit breadboard offering interface port and memory read and write speeds at 100 GigaBit per second and a capacity of at least 3 TeraBits for interconnected constellation telecommunication systems. Targeted Improvements: Improvement of the write speed by a factor of 10 compared to FLASH-based mass memories. Description:Future Low Earth Orbit (LEO) constellations with hig…

  • IN-ORBIT EXPERIMENT OF A VLEO SATELLITE TO ENABLE PRECISE ORBITAL MODELLING AND SYSTEM SIZING (ARTES AT 3E.026) (ON DELEGATION REQUEST)

    The objective of the activity is to develop high fidelity models to allow the mission design of satcom constellations in VLEO. An in-orbit experiment will be designed and manufactured to measure key geographically and time dependent atmospheric parameters (density, radiation, ionospheric, chemical composition etc..) as well as satellite flight parameters (including drag, solar cells efficiency, etc..). These measurements will enable the precis…

  • LUNAR OPTICAL COMMUNICATION PHOTON COUNTING RECEIVER (ARTES 4.0 SL SPL 6C.018)

    Objective: The objective of the activity is the development and testing of an receiver for lunar optical communication in a photon starved regime. Targeted Improvements: Photon-starved optical communications data and tracking receiver with 8 times increased bandwidth (1 ns versus 125 ps). Description: A photon-counting detector receiver package for free-space communications between a lunar satellite and Earth-based ground terminal does not exi…

  • CYBERSECURITY MAKERSPACE: IDENTIFICATION, EXPLORATION AND ASSESSMENT OF CYBERSECURITY CHALLENGES TO SATCOM SYSTEMS  (ARTES 4.0 SPL 4S 3D.025)

    The objective of this activity is to enable rapid delivery of small proof-of-concepts and technical investigations that are addressing emerging cybersecurity challenges in the field of cybersecurity for satcom systems.Procurement Policy: C(2) = A relevant participation (in terms of quality and quantity) of non-primes (incl. SMEs) is required. For additional information please go to:…

  • POWER MODULE FOR AUTONOMOUS SATELLITES (ARTES AT 4F.095)

    The objective of the activity is to design, manufacture and test a power module that will be integrated in an autonomous spacecraftarchitecture.Targeted Improvements:Increase the level of onboard autonomy by 50% at overall platform level.Description: Current satellite operations require human intervention from ground, resulting in considerable inefficiencies and dependencies on communication window frequency, latency, and available resources,…

  • SOLAR ARRAY WITH LATCHED SHALLOW CURVED SURFACE FOR IMPROVED DEPLOYED STIFFNESS (ARTES AT 4F.161) (ON DELEGATION REQUEST)

    The objective of the activity is to develop, manufacture and test a latch to enhance the deployed stiffness of an existing array, by means of a slight repositioning of panels. Targeted Improvements: Increase the frequencies of the deployed array by 30%.Description: Most telecommunication solar arrays comprise in-line panels, arranged in a row. Some include lateral panels, forming a cross configuration. In the case of the latter, the frequency…

  • SPARSE TRANSMIT KA-BAND ACTIVE PHASED ARRAYS FOR GROUND TERMINALS CONNECTED WITH SATELLITES IN DIFFERENT ORBITS (ARTES AT 7A.077)

    The objective of this activity is to develop and test a Ka-band sparse active transmit antenna breadboard and associated beamforming network for ground terminals to be connected with satellites in orbits ranging from geostationary orbits to low earth orbit orbits. Targeted Improvements: - 25% reduction in the number of active controls.- 5% increase in the DC-to-RF power efficiency at antenna level, due to the reduced exploitation of amplitude…

  • PACKAGING OF PHOTONICS FOR LASER COMMUNICATION TERMINALS (ARTES 4.0 SL SPL 5F.029)

    Objective: The objective of the activity is to develop and test different sized packaging solutions with optical and electronic feed-throughs, which allow commercial photonic chips to be deployed in space. Targeted Improvements: By developing innovative packagingtechniques, some types of high-volume parts developed for terrestrial telecommunications markets can be made available for space. Description: This activity aims to establish a packagi…

  • 500 AMPERE CLASS POWER UNIT FOR ONBOARD PAYLOAD SIGNAL PROCESSING HARDWARE IN COMMUNICATION SATELLITES (ARTES AT 5C.516)

    The objective of this activity is to design, manufacture and test a 500A class power unit capable of supplying DC power for both large on-board and AI processors for use in communication satellites.Targeted Improvements: Improved current supply capability of voltage regulators by a factor of ten enabling the use of high performance AI processors (GPUs and TPUs) in future telecom satellites.Description: Artificial Intelligence (AI) processors,…

  • BREADBOARDING OF CRITICAL TECHNOLOGIES FOR A MULTI-BEAM SATELLITE RECEIVER FOR AIRCRAFT MODE-S SIGNALS (ARTES 4.0 4S SPL 5A.082) (ON DELEGATION REQUEST)

    The objective of the activity is to design, develop and test payload technologies compliant with multi-beam receivers for satellite-based air traffic surveillance. Critical breadboarding will be carried out to demonstrate the concept suitable for use on small satellites in LEO or MEO. Targeted Improvements: 50% reduced payload power consumption, mass and volume compared to current technology.Increase the probability of message detection by a f…

  • HIGHLY INTEGRATED TRANSMIT AND RECEIVE DIRECT RADIATING ANTENNA ARRAY BASED ON MM-WAVE SILICON TECHNOLOGIES AND PACKAGING (ARTES AT 5B.241)

    The objective of the activity is to develop a highly integrated, scalable Ku or Ka-band TX/RX direct radiating array, for versatileconnectivity missions in low earth orbit. Critical breadboarding will be carried out, levering the advances in Mm-wave silicon technologies and advanced packaging techniques to achieve a high degree of integration. Targeted Improvements: Enabling highly integrated combined transmit and receive active antenna with a…

  • UNCOORDINATED SATELLITE ACCESS SCHEME OVER-THE-AIR DEMONSTRATION IN MARITIME VHF BANDS (ARTES AT 3C.030) (ON DELEGATION REQUEST)

    The objective of the activity is to develop and test signal reception techniques that enable uncoordinated satellite access schemesin the maritime bands for VHF Data Exchange (VDE) by a population of maritime transmitters in the presence of in-band interference from maritime and external sources such as in-land terrestrial services. The techniques will be implemented and evaluated in a prototype receiver to be developed as part of the activity…

  • SYSTEM ARCHITECTURE AND WAVEFORM FOR AERONAUTICAL MOBILE-SATELLITE ROUTE SAFETY AND SECURITY SERVICES IN C-BAND ( ARTES 4.0 SPL 4S 3A.198)

    The objective of this activity is to design, develop and validate a system architecture and suitable waveform for an Aeronautical Mobile-Satellite (Route) Services (AMS(R)S) constellation in C-band for safety and security services.

  • HIGHLY EFFICIENT 20 W S-BAND AMPLIFIER FOR 5G-CONNECTED CARS (ARTES 4.0 SPL 5G/6G 7C.082)

    The objective of the activity is to design, manufacture and test a highly efficient 20 W S-band Power Amplifier.Targeted Improvements:Efficiency higher than 70% - enabling technology for S-Band automotive applications.Description:Recent studies have shown the potential of satellite communications for 5G-connected cars. Although various frequency bands may be envisaged, the S-band can offer a simple systems architecture as well as a satisfactor…