Funding

This page displays the ARTES Invitation To Tenders (ITTs) which are published on ESA-STAR. If you are looking for a specific element select from the list provided and click on the Apply button to start the search and display the results.

Funding of the individual Prime or subcontractors, for ARTES Core Competitiveness and ARTES Applications activities, is subject to authorisation of the required ARTES budget by the related National Delegations. Therefore, bidding teams are requested to inform their National Delegation(s) of their intention to participate in funded activities already before submitting a proposal.

The official information platform for providing potential bidders all the relevant documentation and details concerning the intended and issued Invitations To Tender (ITTs) for Open Competitions and Direct Negotiations is ESA-STAR - managed and operated by the ESA Procurement Department.

  • LESS THAN ONE WATT STANDBY ON-OFF POWER SWITCHING FRONT END FOR TELECOM UNITS (ARTES 4.0 AT 4F.164)

    The objective of the activity is to develop, manufacture and test an on-off power switching front end for all platform units, consuming less than 1W when set in standby mode and capable to turn on the unit power converter with a command sent over the power bus.Targeted Improvements:- Reduction of 15% of the platform harness mass, of the AIT operations.- Reduction of the unit mass by 10% and of platform dissipation by 30%-50%.- Simplification o…

  • SOFTWARE DEFINED SATELLITE AVIONICS DEVELOPMENT ENVIRONMENT (ARTES AT 4G.046)

    The objective of the activity is to produce a software development environment able to configure and build the full avionics software of a satcom using a model-based approachTargeted Improvements:- Reduction of up to 50% of the development time of the avionics system functions,- Enable one avionic platform to support many missions while being fully reconfigurable in flight.Description:The availability of System-on-Chip, powerful micro-control…

  • MULTI-PLATFORM DUAL BAND CONFIGURABLE POWER AMPLIFIER FOR AVIONIC TERMINALS (ARTES AT 7C.052) (ON DELEGATION REQUEST)

    Objective: The objective of the activity is to develop, manufacture and test a breadboard of a L- and C-band configurable power amplifier to enable dual band operation of avionic terminals. It shall demonstrate 200W peak power per channel and a 10dB dynamic rangewith a constant average power added efficiency of at least 50% for both bands, without compromising linearity performance. The breadboard shall include driver, main and peak amplifier,…

  • ADAPTIVE THERMAL CONTROL OF TELECOM SATELLITES (ARTES 4.0 AT 4D.082) (RE-ISSUE)

    The objective of the activity is to develop and test a breadboard of an electrophoretic panel enabling adaptive thermal control on telecommunication spacecraft. Targeted Improvements:-Enabling technology to allow adaptive control of radiative surfaces.-Reduction in heater power of 40% and in radiator size of 30%. Description: Traditional thermal design balances emissivity and absorption parameters based on surface materials and/or coatings sel…

  • KU AND KA DUAL-BAND TRANSMIT ACTIVE PHASED ARRAY (ARTES AT 5B.236)

    The objective of this activity is to design, develop and test enabling technologies for multi-frequency transmit active antennas. This will include antenna radiating elements, beamforming techniques (analogue vs hybrid), active elements customised in order to cover both the Ku and Ka transmit frequency bands, integrated into a breadboard. Targeted Improvements: Enabling dual Ku and Ka-band transmit active phased arrays. Description: Active ant…

  • MULTI-PURPOSE QUANTUM KEY DISTRIBUTION RECEIVER FOR OPTICAL GROUND STATIONS (ARTES 4.0 4S SPL 3D.013)

    Objective: the objective of the activity is the development and testing of a multi-purpose ground Quantum Key Distribution (QKD) Optical Receiver including a compact decoding set-up for secure key material generation. Key output is the standardization of interfaces a) from the telescope of the optical ground station and b) to the customer key management system.Targeted Improvements: The main target improvement of this activity is the optimisa…

  • DIGITAL TWIN OF A HIGH VOLTAGE MODULE FOR ELECTRONIC POWER CONDITIONERS (EPC) OR POWER PROCESSING UNITS (PPUS) (ARTES AT 4B.183)

    The objective of the activity is to develop a digital model of a high voltage module typically used in power processing units for electric propulsion or travelling wave tube amplifiers. This model or "digital twin" shall enable an in-depth evaluation which is today only possible by test.Targeted Improvements: Enabling a new approach to achieve innovation acceleration of high voltage module design and test, leading to:- decrease of th…

  • SMALLSAT PLATFORM WITH SELF-TRANSFER CAPABILITY INTO GEOSYNCHRONOUS ORBIT (ARTES AT 3E.001) (ON DELEGATION REQUEST)

    The objective of this activity is to develop radiation tolerant platform technologies and semi-autonomous orbit transfer capabilityfor small satellite platforms. An experimental small satellite will be designed, manufactured and launched. The satellite will feature the platform technologies developed as well as a simple telecommunication payload allowing experiments during orbit raising to GEO as well as in GSO. Targeted Improvements: Enabling…

  • PRINTED CIRCUIT BOARD TECHNOLOGY FOR AUTOMOTIVE CONFORMAL ANTENNAS (ARTES 4.0 AT 7C.083)

    The objective of the activity is to investigate, develop and test conformal Printed Circuit Board (PCB) technology using a novel approach, such as additive manufacturing to "print" the antenna for the automotive market. Targeted Improvements: Enabling conformal board of patches with distribution feed and integration of amplifiers on the reverse side, able to follow the shape of a car roof. Description: Conventional PCB technology is…

  • DUAL BAND KU- AND KA-BAND POWER AMPLIFIER FOR FUTURE FLEXIBLE PAYLOADS (ARTES AT 5C.515)

    The objective of the activity is to design, manufacture and test an engineering model of a multi-band (Ku and Ka-band) integrated power amplifier for application in Lower Earth Orbit satellites, enabling seamless flexibility and reconfigurability for active antenna arrays. Targeted Improvements: Enabling technology for seamless Ku- and Ka-band flexible payloads:- reduces mass and volume by 50%,- improves reliability, bill of material and quali…

  • RELIABLE SIMPLE ELECTRICAL INSULATION FOR SATCOM PLATFORMS (ARTES AT 4F.172)

    The objective of the activity is to test electrical insulation methods to replace reliable electrical insulation by reliable simpleelectrical insulation and to provide inputs to guidelines to ECSS-E-ST-20C Rev2.Targeted Improvements:Mass, volume, manufacturing time reduced by a factor of 2 compared to current reliable insulation technologies.Description: Double insulation rules lead tooversize electrical architectures to make them robust to s…

  • REAL-TIME DEMONSTRATION OF ERASURE CORRECTING CODE FOR OPTICAL FEEDER LINKS (ARTES 4.0 SL SPL 3C.048)

    The objective of the activity is to develop and test a real time 100 Gbps erasure code (both coder and decoder components) for optical feeder link protection.Targeted Improvements:Ensure high availability nominally required in feeder links by exceeding 99.5% of link availability due to atmospheric turbulence.Description:The use of terrestrial COTS optical transceivers in optical ground-space and space to space link will enable high throughput…

  • SINGLE-CHIP 71-86 GHZ TRANSCEIVER RFIC FOR AERONAUTICAL SATCOM APPLICATIONS (ARTES AT 6A.074) (ON DELEGATION REQUEST)

    The objective of the activity is to design, manufacture and test an integrated W-band transceiver Radio Frequency Integrated Circuit (RFIC) configurable as transmitter and receiver covering the 71-86 GHz band for aeronautical satcom applications. Targeted Improvements: Enable satellite aeronautical broadband services in W-band. Description: The maturity of Silicon technologies allows for the implementation of multifunctional and reconfigurable…

  • NETWORK EMBEDDED HYBRID CONNECTIVITY OVER TERRESTRIAL AND SATELLITE 5G ACCESS (ARTES 4.0 SPL 5G/6G 3F.012)

    Objective: The objective of this activity is to design, develop and test a 5G system to support upper layer Access Traffic Switching, Steering and Splitting (ATSSS) mechanisms relating a User Equipment (UE) data session across dual terrestrial and satellite 5G access, as well as over dual 5G satellite access.Targeted Improvements:- Enable dual 3GPP access- Significant part reduction - Network and device centric system- Enable 5G Core Network w…

  • HIGH POWER W-BAND TRANSMIT-RECEIVE DIPLEXERS FOR GROUND STATIONS (ARTES AT 6B.118) (ON DELEGATION REQUEST) - EXPRO+

    The objective of this activity is to design, develop and test a high-power Tx/Rx W-band diplexer for ground terminals.Targeted Improvements:Enabling technology for ground stations W-band gateway links with high power handling and low PIM.Description:The useof the available spectrum in W-band (71-76 GHz for downlink and 81-86 GHz for uplink) is attractive to satcom systems asit could beadopted in the gateway of Very High Throughput Satellites (…

  • HIGH BANDWIDTH INTERFACE RADIATION MITIGATION IP CORE FOR PROGRAMMABLE LOGIC DEVICES (ARTES 4.0 AT 5C.489)

    The objective of the activity is to develop, implement and test a 100 Gbps class interface radiation mitigation IP core for programmable logic devices for application in Low Earth and Geostationary Orbits. This includes hardware radiation characterisation and testing. Targeted Improvements: 3 to 4 times improvement of high-speed serial link data rate (from 32 Gbps to 112 Gbps) under radiation conditions. Description: State of the art programma…

  • END-TO-END ADAPTIVE OPTICS BI-DIRECTIONAL MODELLING TOOL FOR OPTICAL FEEDER LINKS (ARTES 4.0 SL SPL 6C.035) - EXPRO+

    Objective: This activity aims at developing a modular software tool allowing to simulate the improvement from employing adaptive optics (AO) systems in bidirectional optical ground station (OGS) to satellites optical communication and quantum links scenarios (e.g. GEO, LEO, MEO). Targeted Improvements: 50% improvement of design time and computation time to dimension optical communication systems operating through atmospheric turbulence enhance…

  • 5G AUTOMOTIVE ANTENNA PROTOTYPE AND DEMONSTRATION (ARTES 4.0 SPL 5G/6G 7C.084)

    The objective is to design and demonstrate a new class of low-profile and conformal antennas, providing seamless connectivity for 5G services on vehicles.Targeted Improvements:Enabling technology Satellite antennas compatible with the constrains of the automotive markets (in terms of aesthetics, aerodynamics and safety), whilst providing seamless connectivity, are currently not available.Description:The automotive sector is a crucial target gr…

  • 5G AUTOMOTIVE MAKERSPACE (ARTES 4.0 SPL 5G/6G 3F.010)

    Objective: The objective of this activity is to design, develop and test automotive prototypes following 5GAA workplans and increase the number of companies working on automotive satellite communications by 30%. Targeted Improvements: Novel hand-over methods between satellite and terrestrial networks supporting use cases as formulated by 5GAA and miniaturised automotive terminal baseband units.Description: The 5G Automotive Association (5GAA)…

  • DEVELOPMENT OF A TESTBED TO ASSESS SPACECRAFT MATERIALS ROBUSTNESS AGAINST ATOMIC OXYGEN IN VERY LOW EARTH ORBIT ENVIRONMENT (ARTES AT 4A.101)

    The Objective: The objective of the activity is to design, manufacture a testbed to determine materials behaviour of atomic oxygen fluence exposure representative in Very Low Earth Orbit (VLEO) environment. With the help of the testbed, in a second step, an aerodynamic and oxygen fluence resistant coating will be developed and evaluated as needed for protection of exposed parts of the spacecraft to the VLEO environment.Targeted Improvements: E…

  • ROLLABLE AND DEPLOYABLE REFLECT-TRANSMIT ARRAY ANTENNAS (ARTES AT 5B.237)

    Objective: The objective is to develop, manufacture and test a breadboard of a lightweight, rollable, passive reflect-array or transmit-array deployed antenna. This shall operate at L- or Sband and have an aperture area of at least 5 square metre.Targeted Improvements: Enabling technology for large aperture deployable antennas based on a simple, reliable and robust mechanical deployment scheme, not existing today in ESA member states.Descripti…

  • PROTOCOL STACK ENABLING VOICE-CALL USING NON-TERRESTRIAL IOT WAVEFORM (ARTES 4.0 SPL 5G/6G 3F.013)

    The objective of this activity is to develop the software protocol stack for Release 18 enhancements related to 5G New for Radio (NR) for Non-Terrestrial Networks. The software protocol stack development shall be based on a testbed considering both the User Equipment (UE) and g-NodeB (gNB) features and operational procedures.Targeted Improvements:Enable 5G NR NTN system performance simulations with the latest Release 18 modifications.Descripti…

  • SATELLITE COMMUNICATION TEST-BED ON-BOARD THE INTERNATIONAL SPACE STATION (ARTES AT 3A.118) (ON DELEGATION REQUEST)

    Objective: The objective of this activity is to develop, deploy and operate a flexible software-defined radio communication testbedwith a frequency flexible RF front end on the International Space Station, supporting a wide range of frequencies up to Q/V band addressing 5G, signal processing and advanced techniques. Targeted Improvements: Enabling innovative and fast developments of future satcom applications from UHF to Q/V band that are diff…

  • END-TO-END DEMONSTRATION OF 5G NEW RADIO (NR) FOR FUTURE RAILWAY MOBILE COMMUNICATION SYSTEMS (ARTES 4.0 SPL 5G/6G 7C.086)

    The objective of this activity is to develop the necessary 5G New Radio (NR) ground segment prototypes for servicing the Future Railway Mobile Communication System (FRMCS) via satellite and demonstrate the capability with end-to-end in orbit testing.Targeted improvements:Ensure compliance to the FRMCS safety and performance requirements by demonstrating the feasibility of servicing via a satellite link, complementing the terrestrial network. P…

  • WEATHER-PROOF OPTICAL COMMUNICATION GROUND TERMINAL (ARTES 4.0 SL SPL 6C.050 ) EXPRO PLUS

    The objective of this activity is to evaluate the pros and cons of a weather-proof optical ground terminal (without protective domeenclosure) and to breadboard critical sub-systems. Targeted Improvements:At least 50% faster optical ground station deployment.Description:Today telescopes for ground based free-space optical satellite communication are originating from astronomical telescopes. The current need for optical ground telescopes has cha…