Funding

This page displays the ARTES Invitation To Tenders (ITTs) which are published on ESA-STAR. If you are looking for a specific element select from the list provided and click on the Apply button to start the search and display the results.

Funding of the individual Prime or subcontractors, for ARTES Core Competitiveness and ARTES Applications activities, is subject to authorisation of the required ARTES budget by the related National Delegations. Therefore, bidding teams are requested to inform their National Delegation(s) of their intention to participate in funded activities already before submitting a proposal.

The official information platform for providing potential bidders all the relevant documentation and details concerning the intended and issued Invitations To Tender (ITTs) for Open Competitions and Direct Negotiations is ESA-STAR - managed and operated by the ESA Procurement Department.

  • BUFFERBLOAT FREE AND CONGESTION RESILIENT SATCOM NETWORKS (ARTES AT 6B.129)

    The objective of this activity is to design, implement and test active queuing management and packet scheduling techniques at the user terminals and ground equipment, so that the SATCOM network continues to provide seamlessly an acceptable throughput and latency to users under any congestion situation.Targeted Improvements:- Enabling a responsive and fair SATCOM network in any traffic andresources availability situation.- Keeping the addition…

  • SYSTEM ARCHITECTURE AND WAVEFORM FOR AERONAUTICAL MOBILE-SATELLITE ROUTE SAFETY AND SECURITY SERVICES IN C-BAND ( ARTES 4.0 SPL 4S 3A.198)

    The objective of this activity is to design, develop and validate a system architecture and suitable waveform for an Aeronautical Mobile-Satellite (Route) Services (AMS(R)S) constellation in C-band for safety and security services.

  • NGSO SIMULATOR FOR 5G VEHICLE-TO-EVERYTHING (V2X) (ARTES 4.0 SPL 5G/6G 3A.183)

    Objective: The objective of the activity is to develop and test NGSO networking techniques for 5G V2X services. The developments will be implemented and verified in a simulator modelling realistic system scenarios of 5G LEO satellites. Targeted Improvements: Enabling the provision of 5G V2X services by satellite. Description:Due to their low altitudes, LEO satellite systems may offer low-latency 5G connectivity that, paired with on-board edge…

  • COMPACT VHF-BAND DIPLEXER FOR SMALL SATELLITE VHF DATA EXCHANGE PAYLOADS (ARTES AT 5E.030)

    The objective of the activity is to design, manufacture and test a compact transmit-receive diplexer engineering model with high isolation, low loss and power handling as required for full duplex VHF data exchange payloads.Targeted Improvements: Enabling technology for full duplex VHF data exchange system (VDES) payloads on small satellite platforms.Description: The World Radiocommunication Conference in 2019 allocated maritime VHF frequencies…

  • EXTENSION OF ELECTRICAL POWER SYSTEM VOLTAGE TO 300V (ARTES AT 4F.146) (ON DELEGATION REQUEST)

    The objective of the activity is to identify, design, manufacture and test critical technology and hardware elements needed for a high voltage electric power system (EPS) for high power telecom applications. This shall include typical primary and secondary DCDC converters and protection circuits (e.g. latching current limiters). Targeted Improvements:- Increase bus voltage up to > 300V, enabling direct drive for electric propulsion;- Reduce…

  • MULTIFREQUENCY TRANSMIT ACTIVE PHASED ARRAYS FOR GROUND TERMINALS CONNECTED WITH MULTI-ORBIT NON GEOSTATIONARY ORBIT SATELLITES (ARTES AT 7A.078)

    The objective of this activity is to design, develop and test enabling technologies for multi frequency transmit active antenna. This will include antenna radiating elements, beamforming techniques and active elements designed to cover Ku and Ka transmit frequency bands for ground terminals connected to non-geostationary multi-orbit satellites.Targeted Improvements: - Mass and size reduction by 30% by sharing components between frequency bands…

  • PREDICTIVE QUALITY OF SERVICE (QOS) PROTOCOL FOR NON-TERRESTRIAL NETWORKS IN SUPPORT OF AUTOMOTIVE SERVICES (ARTES 4.0 SPL 5G/6G 3F.023)

    Objective:This objective of this activity is to develop and test an extended protocol to address the support of predictive Qualityof Service (QoS) in Non-Terrestrial Networks (NTNs). The activity will also undertake the necessary investigation and selection of data-driven algorithms to automate predictive QoS in NTN.Targeted Improvements:Features enhancement to align NTN solutions in an integrated NTN/TN ecosystem in support to automotive serv…

  • AUTONOMOUS HEALTH MONITORING FOR TELECOMMUNICATION PLATFORM MECHANISMS (ARTES 4.0 AT 4E.089)

    The objective of the activity is to develop and test a computer-assisted approach for in-situ operational health monitoring and anomaly detection for mission-critical platform mechanisms (e.g., reaction wheels, solar array drive mechanisms, antenna pointing mechanisms, laser communication terminals, etc.) in telecommunication spacecraft. Rather than relying on telemetry data, this activity will develop an approach using the full signal and sen…

  • LOW COMPLEXITY SOLAR CELLS FOR HIGH VOLUME PRODUCTION (ARTES AT 4F.170)

    The objective of this activity is to develop, manufacture and test new solar cells with new structures, new processes that will increase the throughput.Targeted Improvements: Doubling the production throughput by the introduction of innovative processes with anew solar cell designDescription: Currently the demand of highly efficient solar cells is exceeding the supply and requires to bemuch more competitive. Simplified manufacturing processes…

  • CRITICAL BREADBOARDING ENABLING THE REMOVAL OF FAILED SMALL SATELLITES FROM LOW EARTH ORBIT (ARTES AT 4A.085) (ON DELEGATION REQUEST)

    The objective of the activity is to design, manufacture and test technologies enabling the removal of failed small satellites (e.g.tumbling) from low earth orbit. Several breadboards will be developed and tested to reduce tumbling and to enable rendezvous and capture.Targeted Improvements: Enabling de-orbiting of large constellations of low Earth orbit telecommunication satellites. Description: In the coming years it is expected that the numbe…

  • MACHINE LEARNING TECHNIQUES FOR DATA RATE REDUCTION (ARTES AT 7B.079)

    The objective of this activity is to design, implement and test Machine Learning (ML) and Artificial Intelligence (AI) based data rate reduction techniques for ground terminals. A testbed will be developed to assess performance savings in terms of throughput, complexity and power consumption.Targeted Improvements: Decrease the transmitted data rate by at least 40% for specific applicationsDescription: Many types of data transmissions and recep…

  • ASIC/FPGA WITH 112 GBPS OPTICAL I/OS (ARTES 4.0 SL SPL 5C.480)

    The objective of this activity is to develop the technology step needed to enable the use of optical interconnects at speeds of up to 112 Gbps. This should be demonstrated through testing of an integrated digital signal functions (ASIC and FPGAs) with the developed electro-optic transceiver photonic integrated circuits that form the optical I/Os to replace traditional electrical I/O.Targeted Improvements:Increase the data rate throughput up to…

  • NUTATION BASED FINE TRACKING SYSTEM FOR SPACE OPTICAL COMMUNICATION TERMINALS (ARTES 4.0 SL SPL 5F.049)

    Objective: The objective of the activity is to develop a fine tracking system with reduced complexity and size. The fine tracking of optical communication terminals shall be based on Rx-fibre or Rxbeam nutation for probing the point spread function at the focal plane and will replace the need for a tracking sensor. Targeted Improvements: Reduce the size weight, power and cost of space opticalcommunication terminals by 30%. Description: Nutatio…

  • BEAMFORMING BASED ON LOW-RESOLUTION, LOW POWER CONSUMPTION ANALOGUE TO DIGITAL CONVERTERS (ARTES AT 5C.512) (ON DELEGATION REQUEST)

    The objective of the activity is to develop a beamforming concept based on low resolution and low power consumption Components of The Shelf (COTS) Analogue-to-Digital Converters (ADC). The developed concept will be implemented and tested in a combined software and hardware testbed. Targeted improvements: Improved energy efficiency by >50% thanks to the use of low resolution and low power ADC when compared to 10-12 bit resolution ADCs. Descr…

  • BROADBAND TUNEABLE KA-BAND FREQUENCY MULTIPLEXERS (ARTES AT 5C.430) (ON DELEGATION REQUEST)

    The objective of this activity is to design, manufacture and test two breadboards corresponding to a reconfigurable 4-channel 30 GHz low power Combiner Frequency Multiplexer (CMUX) and a 4-channel 20 GHz low power frequency Demultiplexer (DMUX). Targeted Improvements: Replacement of conventional fixed-bandwidth CMUX and DMUX equipment with a tuneable solution capable of supporting agile traffic management.Description: Current broadband satelli…

  • POWER MODULE FOR AUTONOMOUS SATELLITES (ARTES AT 4F.095)

    The objective of the activity is to design, manufacture and test a power module that will be integrated in an autonomous spacecraftarchitecture.Targeted Improvements:Increase the level of onboard autonomy by 50% at overall platform level.Description: Current satellite operations require human intervention from ground, resulting in considerable inefficiencies and dependencies on communication window frequency, latency, and available resources,…

  • RECONFIGURABLE ANTENNAS FOR MOBILE TERMINALS BASED ON ACTIVE ACTUATORS (ARTES 4.0 AT 7C.080)

    The objective of the activity is to design, manufacture and test a Ku- or Ka-band transmit or receive antenna based on reconfigurable actuators for large mobile terminals connected to Low Earth Orbit (LEO) satellites.Targeted Improvements:Enabling reconfigurable terminal antennas with scan angles up to 50-60 degrees exploiting active actuators like pin or varactor diodes, MEMS and other possible actuators with an overall antenna thickness belo…

  • SPACEBORNE W-BAND HIGH POWER TRAVELLING WAVE TUBE (ARTES AT 5C.486) (ON DELEGATION REQUEST)

    The objective of this activity is to design, develop and test a breadboard of high-power W-band travelling wave tube (TWT) to meet the requirements of Very High Throughput Satellites.Targeted Improvements:Enable a European source of W-band TWT with 5 GHz instantaneous bandwidth, 100 W power output and at least 30% efficiency.Description:High Throughput Satellites (HTS) and Very High Throughput Satellites (VHTS) already use Q/V band frequencies…

  • IN-ORBIT EXPERIMENT OF A VLEO SATELLITE TO ENABLE PRECISE ORBITAL MODELLING AND SYSTEM SIZING (ARTES AT 3E.026) (ON DELEGATION REQUEST)

    The objective of the activity is to develop high fidelity models to allow the mission design of satcom constellations in VLEO. An in-orbit experiment will be designed and manufactured to measure key geographically and time dependent atmospheric parameters (density, radiation, ionospheric, chemical composition etc..) as well as satellite flight parameters (including drag, solar cells efficiency, etc..). These measurements will enable the precis…

  • AUTOMOTIVE S-BAND ANTENNA FOR SATELLITE IOT AND 5G TERRESTRIAL COMMUNICATIONS (ARTES SPL 5G 7C.062) (UPON DELEGATION REQUEST)

    Upon Delegation Request (*) The objective of the activity is to develop, manufacture and test an integrated automotive S-band antenna that combines satellite IoT and 5G terrestrial communications. Targeted Improvements: Reduction of antenna form factor from a protruding antenna (e.g. shark fin shape) to planar antenna fully integrated in the car roof. Bandwidth increase from 30 to 90 MHz for satellite and 5G communications. Description: The In…

  • 500 AMPERE CLASS POWER UNIT FOR ONBOARD PAYLOAD SIGNAL PROCESSING HARDWARE IN COMMUNICATION SATELLITES (ARTES AT 5C.516)

    The objective of this activity is to design, manufacture and test a 500A class power unit capable of supplying DC power for both large on-board and AI processors for use in communication satellites.Targeted Improvements: Improved current supply capability of voltage regulators by a factor of ten enabling the use of high performance AI processors (GPUs and TPUs) in future telecom satellites.Description: Artificial Intelligence (AI) processors,…

  • BEYOND 5G (B5G) AND 6G NON-TERRESTRIAL NETWORKS EDGE COMPUTING SATELLITES (ARTES 4.0 SPL 5G/6G 3A.184)

    The objective of the activity is to study and define a technical and deployment roadmap for edge-computing-enabled Beyond 5G (B5G) and 6G space infrastructure. Use cases of Non-Terrestrial Networks (NTN) edge computing will be selected and a corresponding demonstrator will be breadboarded and tested.Targeted Improvements: Enabling edge-computing-capable space infrastructure.Description:The Beyond 5G (B5G)/towards 6G roadmap is rapidly evolving…

  • SPARSE TRANSMIT KA-BAND ACTIVE PHASED ARRAYS FOR GROUND TERMINALS CONNECTED WITH SATELLITES IN DIFFERENT ORBITS (ARTES AT 7A.077)

    The objective of this activity is to develop and test a Ka-band sparse active transmit antenna breadboard and associated beamforming network for ground terminals to be connected with satellites in orbits ranging from geostationary orbits to low earth orbit orbits. Targeted Improvements: - 25% reduction in the number of active controls.- 5% increase in the DC-to-RF power efficiency at antenna level, due to the reduced exploitation of amplitude…

  • TRANSMIT-RECEIVE BEAMFORMING AND FRONT-END CIRCUITS AND CHIPS FOR Q-V BAND SATCOM TERMINALS (ARTES AT 7C.097)

    Objectives: The objective of this activity is to design, manufacture and test integrated circuits of the critical beamforming functions in silicon technologies, enabling Q/V-band electronically steerable antenna for satcom terminals. As a minimum, two types of integrated circuits will be developed. One chip shall be a multichannel transmit-receive beamforming radio frequency integrated circuit (RFIC) and the second chip shall be a multichannel…

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT: INTEGRATED OPTICAL INTERFACES FOR RF PHASED ARRAY ANTENNAS (5F.013 / SL.030)

    Objective:The objective of the activity is to analyse and demonstrate the benefits of replacing coaxial cables/waveguides with fibre optics in large RF phased array antennas. The activity shall identify the best technologies to be employed and it will design, manufacture and test 2 breadboard demonstrators covering both analogue and digital transmission.Targeted Improvements:Order of magnitude mass and volume reduction by substituting the pass…