Funding

This page displays the ARTES Invitation To Tenders (ITTs) which are published on ESA-STAR. If you are looking for a specific element select from the list provided and click on the Apply button to start the search and display the results.

Funding of the individual Prime or subcontractors, for ARTES Core Competitiveness and ARTES Applications activities, is subject to authorisation of the required ARTES budget by the related National Delegations. Therefore, bidding teams are requested to inform their National Delegation(s) of their intention to participate in funded activities already before submitting a proposal.

The official information platform for providing potential bidders all the relevant documentation and details concerning the intended and issued Invitations To Tender (ITTs) for Open Competitions and Direct Negotiations is ESA-STAR - managed and operated by the ESA Procurement Department.

  • DVB ENERGY SAVING DELIVERY OF CONTENT (ARTES AT 3A.201)

    Objective: The objective of the activity is to design, develop and test protocols and system level approaches for energy saving video content distribution in satellite telecommunication networks. A testbed will be developed to evaluate the energy savings achievedin real networks considering the different video codecs, air interfaces and video quality. The output shall be available to the DVBstandardisation EADC (Energy Aware Delivery and Consu…

  • END-TO-END DEMONSTRATION OF 5G NEW RADIO (NR) FOR FUTURE RAILWAY MOBILE COMMUNICATION SYSTEMS (ARTES 4.0 SPL 5G/6G 7C.086)

    The objective of this activity is to develop the necessary 5G New Radio (NR) ground segment prototypes for servicing the Future Railway Mobile Communication System (FRMCS) via satellite and demonstrate the capability with end-to-end in orbit testing.Targeted improvements:Ensure compliance to the FRMCS safety and performance requirements by demonstrating the feasibility of servicing via a satellite link, complementing the terrestrial network. P…

  • POWER EFFICIENT USER PLANE FUNCTIONS FOR B5G SMALL SATELLITE PLATFORMS (ARTES 4.0 SPL 5G/6G 3F.016)

    Objective:The objective of this activity is to develop and test a power efficient 5G User Plane Function (UPF) prototype, implemented onto space enabled hardware platforms. The development will leverage concrete laboratory results of various RAN splits and compensate for their impact on the 5G protocol stack. Finally, system integration with a ground segment control plane will be tested, over emulated LEO constellationsTargeted Improvements:-…

  • HIGH SPEED DISRUPTIVE TOLERANT NETWORKING NODE FOR DIRECT-TO-EARTH LINKS (ARTES AT 6B.095) (RE-ISSUE OF 1-11211)

    The objective of this activity is to develop and test a prototype of a Disruptive Tolerant Network (DTN) software node for the ground segment for usage in end-to-end data communication architectures, to support high speed Direct-to-Earth space links with bitrates up to 10Gbit/s. The DTN node shall be adaptable to state ofart high speed modems and monitoring and control architectures.Targeted Improvements: Eenable disruptive tolerant network no…

  • ARTES 4.0 SPL 4S 3A.199 RADIO RESOURCE MANAGEMENT TECHNIQUES FOR JAMMING MITIGATION IN NGSO CONSTELLATIONS

    The objective of the activity is to design, develop and test jamming mitigation strategies for NGSO broadband secure systems based on adaptive radio resource management algorithms.

  • AUTOMOTIVE S-BAND ANTENNA FOR SATELLITE IOT AND 5G TERRESTRIAL COMMUNICATIONS (ARTES SPL 5G 7C.062) (UPON DELEGATION REQUEST)

    Upon Delegation Request (*) The objective of the activity is to develop, manufacture and test an integrated automotive S-band antenna that combines satellite IoT and 5G terrestrial communications. Targeted Improvements: Reduction of antenna form factor from a protruding antenna (e.g. shark fin shape) to planar antenna fully integrated in the car roof. Bandwidth increase from 30 to 90 MHz for satellite and 5G communications. Description: The In…

  • DIRECT CHIP COOLING WITH PULSATING HEAT PIPES (PHPS) (ARTES AT 4D.086)

    The objective is to develop and test a direct chip to baseplate thermal concept based on Pulsating Heat Pipes that reduces design complexity and yet widens the operating temperature range and thermal transport performance.Targeted Improvements: - Improved heattransfer performance to at least 60 watts per chip.- Operation in adverse vertical gravity and below -40C- Reduced manufacturing complexity in chip to unit baseplate thermal transport com…

  • EUROPEAN CHIP INDUCTOR FOR POINT OF LOAD CONVERTERS IN TELECOMMUNICATION SATELLITES (ARTES 4.0 AT 5C.499)

    The objective of the activity is to design, manufacture and test surface mount chip inductors enabling low voltage (down to 0.8 V range) stability, fast transient response, high-speed switching capability and efficient power conversion of point of load(POL) converters, as needed for next generation digital integrated circuits in telecommunication satellites.Targeted Improvements:- Enablinga European source.- 20% mass and volume reduction and 2…

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT: INTEGRATED OPTICAL INTERFACES FOR RF PHASED ARRAY ANTENNAS (5F.013 / SL.030)

    Objective:The objective of the activity is to analyse and demonstrate the benefits of replacing coaxial cables/waveguides with fibre optics in large RF phased array antennas. The activity shall identify the best technologies to be employed and it will design, manufacture and test 2 breadboard demonstrators covering both analogue and digital transmission.Targeted Improvements:Order of magnitude mass and volume reduction by substituting the pass…

  • LARGE ROTATION RANGE, FLEXIBLE PIVOT WITH HOLLOW INNER SHAFT (ARTES 4.0 SL SPL 5B.221) - EXPRO PLUS (ON REQUEST)

    The objective of the activity is to develop a breadboard of a flexible pivot a with large range of rotation angle (goal90 degrees),which features a hollow inner shaft to route an optical beam for optical communications or cables/waveguide in other applications.Targeted Improvements:One order of magnitude improvement in operating lifetime of coarse pointing mechanisms in optical communication terminals compared to ball bearing mechanisms, and a…

  • ARTIFICIAL INTELLIGENCE-BASED SYSTEM FOR AUTONOMOUS ON-BOARD FAILURE ISOLATION, RECOVERY, AND RESOURCE OPTIMISATION FOR TELECOMMUNICATION CONSTELLATIONS (ARTES AT 4A.099) (ON DELEGATION REQUEST)

    The objective of the activity is to design, develop and validate an on-board software relying on Artificial Intelligence that autonomously detect, isolate and recover failures at spacecraft level and that performs resource optimisation at constellation level to recover and improve the overall availability of the service.Targeted Improvements: - Enabling autonomous FDIR management at the level of constellations.- Enabling autonomous performance…

  • PIONEER PARTNERSHIP PROJECTS (PIONEER 4.0) - OPEN CALL FOR PROPOSAL

    The Pioneer programme, implemented under the ARTES 4.0 Generic Programme Line "Partnership Projects", aims to supports the emergence of Space Mission Providers (SMPs), i.e. commercial entities interested in becoming one-stop-shop service providers for public and private customers. The Open Call for proposals is aimed to offer the opportunity for new companies from across all ESA member statesto participate in the programme. It will b…

  • BUFFERBLOAT FREE AND CONGESTION RESILIENT SATCOM NETWORKS (ARTES AT 6B.129)

    The objective of this activity is to design, implement and test active queuing management and packet scheduling techniques at the user terminals and ground equipment, so that the SATCOM network continues to provide seamlessly an acceptable throughput and latency to users under any congestion situation.Targeted Improvements:- Enabling a responsive and fair SATCOM network in any traffic andresources availability situation.- Keeping the addition…

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT: RF AND OPTICAL HYBRID GATEWAY ANTENNA (6C.002/SL.024)(ON DELEGATION REQUEST) - EXPRO PLUS

    Objective:The objective of this activity is to investigate a telecom gateway antenna able to work simultaneously in both the RF (Ka- Q/V-Band) and optical wavelengths.Targeted Improvements:This product is currently not available and it would allow a phased migration from RF communications to optical communications.Description:There is a clear trend in the need to increase bandwidth in order to increase the data rate, within the telecommunicat…

  • OPTIMISED VIRTUAL PRIVATE NETWORKS FOR CONSTELLATIONS (LEO, MEO, OR MULTI-ORBIT) AND GEO SPACE NETWORKS ( ARTES 4.0 SPL 4S 3D.031)

    The objectives of this activity are to design, develop and test techniques enabling integration of existing and new VPN solutions suitable for space networks (LEO constellation, MEO constellation or GEO) for the purpose of comparison, performance evaluation and optimisation, while maintaining compatibility with terrestrial networks.

  • MASS MEMORY UNIT WITH 100 GIGABIT PER SECOND WRITE RATE CLASS FOR LOW EARTH ORBIT COMMUNICATION APPLICATIONS (ARTES AT 5C.498) (ON DELEGATION REQUEST)

    The objective of this activity is to design, manufacture and test a memory unit breadboard offering interface port and memory read and write speeds at 100 GigaBit per second and a capacity of at least 3 TeraBits for interconnected constellation telecommunication systems. Targeted Improvements: Improvement of the write speed by a factor of 10 compared to FLASH-based mass memories. Description:Future Low Earth Orbit (LEO) constellations with hig…

  • COMPACT VHF-BAND DIPLEXER FOR SMALL SATELLITE VHF DATA EXCHANGE PAYLOADS (ARTES AT 5E.030)

    The objective of the activity is to design, manufacture and test a compact transmit-receive diplexer engineering model with high isolation, low loss and power handling as required for full duplex VHF data exchange payloads.Targeted Improvements: Enabling technology for full duplex VHF data exchange system (VDES) payloads on small satellite platforms.Description: The World Radiocommunication Conference in 2019 allocated maritime VHF frequencies…

  • FREE-SPACE COHERENT OPTICAL LINK FOR TIME AND FREQUENCY TRANSFER (ARTES 4.0 SL SPL 5F.041)

    Objective:The objective of the activity is to develop and prototype a free-space optical Frequency and Timing transfer solution over a coherent optical link optimised for the use case of linking critical infrastructure and metrology applications.Targeted Improvements:The two parameters to be improved over existing RF-based techniques are time and frequency transfer accuracy (factor 5 to 10 improvement), resistance to interference and robustnes…

  • MULTIFREQUENCY TRANSMIT ACTIVE PHASED ARRAYS FOR GROUND TERMINALS CONNECTED WITH MULTI-ORBIT NON GEOSTATIONARY ORBIT SATELLITES (ARTES AT 7A.078)

    The objective of this activity is to design, develop and test enabling technologies for multi frequency transmit active antenna. This will include antenna radiating elements, beamforming techniques and active elements designed to cover Ku and Ka transmit frequency bands for ground terminals connected to non-geostationary multi-orbit satellites.Targeted Improvements: - Mass and size reduction by 30% by sharing components between frequency bands…

  • MULTI-DIMENSIONAL FREE-SPACE QUANTUM KEY DISTRIBUTION PROTOCOL  ( ARTES 4.0 SPL 4S 3D.028)

    The objective of the activity is to define, develop and test in a breadboard (consisting of transmitter and receiver) a multi-dimensional quantum state encoding (e.g., spatial and polarisation quantum states) protocol suitable for QKD in free space through the atmosphere.

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT : DEMONSTRATION OF RELIABLE HIGH DATA RATE OPTICAL LINKS UNDER STRONG ATMOSPHERIC TURBULENCE CONDITIONS (3B.042 / SL.015)

    Objective:The objective of this activity is to demonstrate reliable high data rate optical transmission through the atmosphere (>100Gbps) in a scenario representative (in terms of link attenuation and optical turbulence) of an optical link between a telecom satellite and an Optical Ground Station for elevation angles down to 5deg. Targeted Improvements:Improve the service quality and availability of high data rate optical links through the…

  • SOFTWARE DEFINED NETWORKING-BASED SOLUTIONS FOR EFFICIENT DISTRIBUTED DENIAL OF SERVICES PROTECTION OF 5G NON TERRESTRIAL NETWORKS (ARTES 4.0 SPL 4S 3D.027)

    The objective of this activity is to identify+ develop and test Software Defined Networking (SDN) based solutions for 5G Core Network (CN)+ capable of addressing efficiently and effectively Distributed Denial of Services (DDoS) attacks against 5G Non-Terrestrial Networks. This activity will develop a testbed of SDN implementation for 5G CN to test protection mechanisms against various attack scenarios for relevant 5G NTN use cases+ and study t…

  • SOLAR ARRAY WITH LATCHED SHALLOW CURVED SURFACE FOR IMPROVED DEPLOYED STIFFNESS (ARTES AT 4F.161) (ON DELEGATION REQUEST)

    The objective of the activity is to develop, manufacture and test a latch to enhance the deployed stiffness of an existing array, by means of a slight repositioning of panels. Targeted Improvements: Increase the frequencies of the deployed array by 30%.Description: Most telecommunication solar arrays comprise in-line panels, arranged in a row. Some include lateral panels, forming a cross configuration. In the case of the latter, the frequency…

  • LOW COMPLEXITY SOLAR CELLS FOR HIGH VOLUME PRODUCTION (ARTES AT 4F.170)

    The objective of this activity is to develop, manufacture and test new solar cells with new structures, new processes that will increase the throughput.Targeted Improvements: Doubling the production throughput by the introduction of innovative processes with anew solar cell designDescription: Currently the demand of highly efficient solar cells is exceeding the supply and requires to bemuch more competitive. Simplified manufacturing processes…

  • ATMOSPHERIC TURBULENCE EFFECT MITIGATION BY SECONDARY MIRROR ACTUATION (ARTES 4.0 SL SPL 6C.020)

    Objective: The objective of this activity is to simplify optical feeder links systems in Optical Ground Stations by replacing the secondary mirror with an active (deformable) one and to demonstrate the improvement in transmission budget and complexity. Targeted Improvements: 30% increased optical throughput in optical communication ground stations. 20% reduction of complexity in adaptive optics and beam pre-distortion in feeder-link systems. R…