Funding

This page displays the ARTES Invitation To Tenders (ITTs) which are published on ESA-STAR. If you are looking for a specific element select from the list provided and click on the Apply button to start the search and display the results.

Funding of the individual Prime or subcontractors, for ARTES Core Competitiveness and ARTES Applications activities, is subject to authorisation of the required ARTES budget by the related National Delegations. Therefore, bidding teams are requested to inform their National Delegation(s) of their intention to participate in funded activities already before submitting a proposal.

The official information platform for providing potential bidders all the relevant documentation and details concerning the intended and issued Invitations To Tender (ITTs) for Open Competitions and Direct Negotiations is ESA-STAR - managed and operated by the ESA Procurement Department.

  • LUNAR LASER COMMUNICATION TERMINAL (ARTES 4.0 SL SPL 5G.045)

    Objective: The objective of the activity is to first design a Laser Communication Terminal (LCT) concept suitable for communicationover lunar distances. In a second step, the activity will develop an engineering model of a CCSDS compatible transceiver with critical functions including coding, synchronisation, and modulation. Targeted Improvements: Enabling a European or Canadian lunar communication terminal operating with a data rate one order…

  • BROADBAND TUNEABLE KA-BAND FREQUENCY MULTIPLEXERS (ARTES AT 5C.430) (ON DELEGATION REQUEST)

    The objective of this activity is to design, manufacture and test two breadboards corresponding to a reconfigurable 4-channel 30 GHz low power Combiner Frequency Multiplexer (CMUX) and a 4-channel 20 GHz low power frequency Demultiplexer (DMUX). Targeted Improvements: Replacement of conventional fixed-bandwidth CMUX and DMUX equipment with a tuneable solution capable of supporting agile traffic management.Description: Current broadband satelli…

  • BEYOND 5G (B5G) AND 6G NON-TERRESTRIAL NETWORKS EDGE COMPUTING SATELLITES (ARTES 4.0 SPL 5G/6G 3A.184)

    The objective of the activity is to study and define a technical and deployment roadmap for edge-computing-enabled Beyond 5G (B5G) and 6G space infrastructure. Use cases of Non-Terrestrial Networks (NTN) edge computing will be selected and a corresponding demonstrator will be breadboarded and tested.Targeted Improvements: Enabling edge-computing-capable space infrastructure.Description:The Beyond 5G (B5G)/towards 6G roadmap is rapidly evolving…

  • ACCELEROMETER FOR DRAG COMPENSATION IN VERY LOW EARTH ORBIT (ARTES AT 4C.069) (ON DELEGATION REQUEST)

    The objective of the activity is to design, manufacture and test an accelerometer for drag compensation in Very Low Earth Orbit (VLEO). Targeted Improvements: - Enabling real time compensation of drag by the propulsion system. - Miniaturisation of instrument by a factor 10 compared to existing payload grade accelerometers. - Increase accuracy by factor 10 compared to existing accelerometers used for orbital control.Description: While intere…

  • QUANTUM RESISTANT KEY EXCHANGE AND AUTHENTICATION MECHANISM FOR 5G NON-TERRESTRIAL NETWORKS (ARTES 4.0 SPL 4S 3D.026)

    The objective of this activity is to identify, analyse and test post quantum cryptographic solutions that are suitable for 5G Non-Terrestrial Network (NTN) key exchange and authentication. The activity will develop a testbed to implement and test identified post quantum cryptographic solutions.

  • DISTINCT TRANSMIT AND RECEIVE SATELLITE SYSTEM FOR SIMULTANEOUS TWO-WAY LOW DATA RATE COMMUNICATION SERVICES (ARTES AT 3A.202)

    The objective of the activity is to design a system concept based on distinct transmit-only and receive-only satellites for the user link. The goal is to enable at the system level simultaneous two-way low data rate communication services such as Internet of Things, messaging, and VDES operating in frequency range from VHF to C-band. The system concept will be implemented and tested in an end-to-end system testbed. This includes the user termi…

  • AUTONOMOUS LASER SAFETY SYSTEM FOR OPTICAL FEEDER LINK SUPPORTING OPTICAL AND QUANTUM COMMUNICATIONS (ARTES 4.0 SL SPL 6B.114) - RE-ISSUE

    Objective: The objective of the activity is to develop and test a laser safety system for Optical Feeder Link (OFL) operations based on AI/ML techniques. The activity shall emphasise on airspace safety measures to handle uplink operations with significant opticalpower. The safety system shall be capable to operate autonomously. Implementation shall be based on commercially available hardwareplatforms. The activity will also provide the testbed…

  • AUTOMOTIVE S-BAND ANTENNA FOR SATELLITE IOT AND 5G TERRESTRIAL COMMUNICATIONS (ARTES SPL 5G 7C.062) (UPON DELEGATION REQUEST)

    Upon Delegation Request (*) The objective of the activity is to develop, manufacture and test an integrated automotive S-band antenna that combines satellite IoT and 5G terrestrial communications. Targeted Improvements: Reduction of antenna form factor from a protruding antenna (e.g. shark fin shape) to planar antenna fully integrated in the car roof. Bandwidth increase from 30 to 90 MHz for satellite and 5G communications. Description: The In…

  • OPEN REPROGRAMMABLE SPACE INFRASTRUCTURE TESTBED FOR BEYOND 5G (B5G) END-TO-END SOLUTIONS AND SERVICES (ARTES 4.0 SPL 5G/6G 3E.019)

    The objective of the activity is to develop and test a reprogrammable testbed in space to permit the experimentation of Beyond 5G (B5G) satellite features and capabilities and enable technology verification and demonstration; rapid validation of end-to-end solutions and services, following the principles of continuous development/continuous integration. B5G satellitefeatures will be implemented in the testbed as part of the activity to demonst…

  • RESILIENT SECURE ROUTING FOR SATELLITE NETWORK CONSTELLATIONS (ARTES 4.0 SPL 4S 3A.197)

    The objective of this activity is to define, develop and test in a test bed, routing algorithms and schemes, and other mitigation techniques that need to be implemented in different types of satellite networks (LEO, MEO and multi-orbit constellations) so as to mitigate the risk of routing-based DDoS attacks. The mitigations, which shall include all potential types, from optimised for DDoS resilience routing algorithms, to in-network filtering,…

  • CHANNEL ESTIMATION AND ADAPTATION TECHNIQUES FOR Q/V BAND FEEDER LINKS OF LEO/MEO CONSTELLATION (ARTES AT 3B.048)

    The objective of this activity is to design, develop and test channel estimation and adaptation techniques as needed for Q/V band feeder links of LEO/MEO constellation with regenerative on-board processors. An end-to-end system testbed will be developed that includes varying channel, antenna and hardware impairments in the downlink and uplink depending on the elevation angle. The testbed willinclude the baseband, analogue and RF domain to test…

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT: INTEGRATED OPTICAL INTERFACES FOR RF PHASED ARRAY ANTENNAS (5F.013 / SL.030)

    Objective:The objective of the activity is to analyse and demonstrate the benefits of replacing coaxial cables/waveguides with fibre optics in large RF phased array antennas. The activity shall identify the best technologies to be employed and it will design, manufacture and test 2 breadboard demonstrators covering both analogue and digital transmission.Targeted Improvements:Order of magnitude mass and volume reduction by substituting the pass…

  • COMPACT TRIBOLOGY-FREE POINTING MECHANISM (ARTES AT 4E.094)

    The objective of the activity is to design, manufacture and test a tribology-free mechanism breadboard for both platform and payload pointing applications on telecom satellites. The lifetime of the developed mechanism shall be assessed, and endurance testing shall be carried out. Targeted Improvements: Enabling a European source of compact, tribology-free pointing mechanisms with no backlash or friction hysteresis effects. Description: Today p…

  • PIONEER PARTNERSHIP PROJECTS (PIONEER 4.0) - OPEN CALL FOR PROPOSAL

    The Pioneer programme, implemented under the ARTES 4.0 Generic Programme Line "Partnership Projects", aims to supports the emergence of Space Mission Providers (SMPs), i.e. commercial entities interested in becoming one-stop-shop service providers for public and private customers. The Open Call for proposals is aimed to offer the opportunity for new companies from across all ESA member statesto participate in the programme. It will b…

  • SECURE SATCOM MODULE IN SUPPORT OF GLOBAL NAVIGATION SATELLITE SYSTEM SERVICE DELIVERY AND ROBUSTNESS (ARTES 4.0 SPL 4S 3A.196) (ON DELEGATION REQUEST)

    The objective of the activity is to design+ develop and manufacture a ground-based breadboard module allowing existing and auxiliary data from/linked to GNSS services to be securely delivered to their users via satellite communications using a secure protocol.

  • FACETED RECONFIGURABLE REFLECTOR BASED ON REFLECT ARRAY TECHNOLOGY (ARTES AT 5B.242)

    The objective of this activity to design, manufacture and test a Ku- or Ka-band faceted reconfigurable reflect array operating in receive band for reconfigurable coverage applications. RF and thermo-elastic performance shall be experimentally evaluated.TargetedImprovements: - Reduction up to 20% the reflector aperture diameter in comparison to today's shape reflector technology.- Improvement of the directivity performance at the edge of t…

  • 5G NEW RADIO (NR) NON-TERRESTRIAL NETWORKS RELEASE 18 PROTOCOL STACK ENHANCEMENTS (ARTES 4.0 SPL 5G/6G 3F.011)

    The objective of this activity is to develop the software protocol stack for Release 18 enhancements related to 5G New for Radio (NR) for Non-Terrestrial Networks. The software protocol stack development shall be based on a testbed considering both the User Equipment (UE) and g-NodeB (gNB) features and operational procedures.Targeted Improvements:Enable 5G NR NTN system performance simulations with the latest Release 18 modifications.Descripti…

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT: RF AND OPTICAL HYBRID GATEWAY ANTENNA (6C.002/SL.024)(ON DELEGATION REQUEST) - EXPRO PLUS

    Objective:The objective of this activity is to investigate a telecom gateway antenna able to work simultaneously in both the RF (Ka- Q/V-Band) and optical wavelengths.Targeted Improvements:This product is currently not available and it would allow a phased migration from RF communications to optical communications.Description:There is a clear trend in the need to increase bandwidth in order to increase the data rate, within the telecommunicat…

  • W-BAND HIGH POWER AMPLIFIER FOR THE GROUND SEGMENT (ARTES AT 6B.120) (ON DELEGATION REQUEST)

    Objective: The objective of the activity is to design, manufacture and test a W-band HPA for the ground segment. Targeted Improvements: Enabling W-band feeder uplink communications. Description: The use of W-band (71-76 GHz for downlink and 81-86 for uplink GHz) is expected to significantly increase the available bandwidth for Very High Throughput Satellite Systems (VHTS). W-band spectrum is also expected to reduce the number of gateways requi…

  • HIGH EFFICIENCY Q-BAND POWER AMPLIFIER MONOLITHIC MICROWAVE INTEGRATED CIRCUIT FOR ACTIVE ANTENNAS (ARTES AT 5B.238)

    The objective of the activity is to design, manufacture and test a set of highly efficient (minimum 25% power added efficiency) Q-band Monolithic Microwave Integrated Circuits (MMIC) for active antenna applications in GEO, MEO and LEO. The packaged devices will be based on European technology covering the 10 Watt power class (GEO) down to a few 100mWs for LEO applications. Targeted Improvements: Enabling critical building block technology deve…

  • FREE-SPACE COHERENT OPTICAL LINK FOR TIME AND FREQUENCY TRANSFER (ARTES 4.0 SL SPL 5F.041)

    Objective:The objective of the activity is to develop and prototype a free-space optical Frequency and Timing transfer solution over a coherent optical link optimised for the use case of linking critical infrastructure and metrology applications.Targeted Improvements:The two parameters to be improved over existing RF-based techniques are time and frequency transfer accuracy (factor 5 to 10 improvement), resistance to interference and robustnes…

  • PROTECTION OF SATELLITE COMMUNICATIONS GROUND SEGMENT FROM INTERFERENCE/JAMMING INITIATED FROM LEO CONSTELLATION(S)  (ARTES 4.0 SPL 4S 3D.030)

    The objective of the activity is to examine the potential threat of New Space constellations to form a botnet able to generate intentional interference for other communications satellites, and to propose and assess relevant mitigation mechanisms.

  • EARTH UPPER ATMOSPHERE FORECAST TOOL FOR MISSION DESIGN AND OPERATION (ARTES 4.0 AT 4C.066)

    The objective is to develop a multi-model informed predictive tool of atmospheric parameter variability for mission design and operation.Targeted Improvements:- Enabling a new European tool allowing prediction of atmospheric conditions (e.g., density, composition, radiation) over time, including local state and total dose.- To reduce initial mission design margins hence avoiding overdesign.Description: The recent loss of several communication…

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT : DEMONSTRATION OF RELIABLE HIGH DATA RATE OPTICAL LINKS UNDER STRONG ATMOSPHERIC TURBULENCE CONDITIONS (3B.042 / SL.015)

    Objective:The objective of this activity is to demonstrate reliable high data rate optical transmission through the atmosphere (>100Gbps) in a scenario representative (in terms of link attenuation and optical turbulence) of an optical link between a telecom satellite and an Optical Ground Station for elevation angles down to 5deg. Targeted Improvements:Improve the service quality and availability of high data rate optical links through the…

  • IN-ORBIT W-BAND CHANNEL CHARACTERISATION FROM GEOSTATIONARY ORBIT (ARTES AT 3E.018) (ON DELEGATION REQUEST)

    The objective of the activity is to carry out characterisation of the W-band channel affected by diurnal and long duration atmospheric changes, enabling future W-band system sizing. The activity will design, develop and test a W-band terminal hosted on a geostationary Earth orbit (GEO) spacecraft, and the associated ground terminals. Targeted Improvements:Increase in the acquisition time of W-band channel measurements for stable atmospheric pa…