Definition of Propagation Elements for System Design of Broadband Satellite Systems in Ka and Q/V Band

Objectives

The objectives of this project are to review and develop channel models, data and tools tailored for the design of High-Capacity Flexible Broadband Satellite Systems operating (Q/V and Ka Band) with a major focus on future system at Q/V Band. In particular,

  • Review and improve the applicability of current propagation models to future HTS operating at Q/V band.
  • Identify and model the statistical error margins of the propagation models for Q/V band FSS systems.
  • Develop and implement system optimisation algorithms for the design of Q/V Band system that takes into account propagation effects. These algorithms are implemented in a SW tool to be used by system engineers.
  • Define criteria, thresholds and algorithms to be used in the execution of future campaigns at Q/V Band in which propagation measurements are used to control and verify the execution of a telecom experiment.
  • Submission of experimental tables and results of model testing to ITU-R

Challenges

The project’s  aims are to  the identify  the challenges of migrating to Q/V band (e.g. severe atmospheric attenuation) and propose  relevant solutions. Particular emphasis is given to

i) the modelling of the uncertainty of the required propagation models

 ii) the development of a  user friendly SW tool which implements the  required optimization algorithms.

Benefits

As a general rule, moving to higher frequencies provides greater bandwidth and thus higher potential data rates. However it is more demanding in terms of technology (and thus hardware costs), and ultimately more prone to the attenuation effects of  atmospheric gases, clouds, rain and tropospheric turbulence.

 The project outputs facilitate the design of a Ka and Q/V band broadband satellite system, which takes into account critical issues such as propagation uncertainty. It also proposes experiments for the thorough understanding of the behaviour of these systems under real atmospheric conditions.

Features

The software tool for defining the propagation elements comprises of the following modules:

  • Propagation Module

For a specific configuration (e.g. elevation angle, location, frequency) the module provides: 

i)             Prediction of Long-term statistics of Atmospheric Parameters.

ii)            Extraction of   Long-term statistics of Atmospheric Parameters or relevant input data  from the ITU-R DBSG3.

  • Link Budget Calculation Module 

Link budget calculations for selected links (which are statistically representative of the radio-climatological conditions over the coverage area), for a specific set of system parameters (e.g. EIRP of the transmitter, G/T of the receiving station, MODCOD scheme, etc.) Each estimate of the link budget is provided with the associate confidence interval.

  • Link Budget optimization  Module

The tool performs an optimisation of the radio link budget based on the range of expected parameter values (i.e. EIRP, location etc) and system performance targets ( i.e. availability, quality, etc) 

Plan

The project is divided into three tasks:

  • The first task consists of a state-of-the-art review (System Architectures, Propagation Review), preliminary design of the SW tool and a review of planned satellite experiments at Q/V band.
  • The second task consists of:

i)             Improvement/Development of the required propagation models,  the associated modelling of the uncertainty of the predictions and implementation in SW procedures

ii)                    Development of optimisation algorithms

iii)                  Final design of the SW tool.

  • The task 3 consists of the implementation of the design tool, description of future algorithms for telecom campaigns and the final reporting (including new ITU-R input documents and data tables).

Current status

This project is currently undertaking the state-of-the-art review. 

Contacts

ESA Contacts

Status date

Wednesday, August 8, 2018 - 10:34