Photonic Transceivers for Spacecraft Data Links up to 5 Gbps
Ron Logan and Davinder Basuita
ESA ScyLight Workshop, ESTEC, 8 February 2017
Outline

- **Problem:**
 - Reducing mass of 1-10 Gbps+ aerospace interconnects

- **Solution:**
 - Fiber optic interconnects

- **Approach:**
 - Rugged photonic transceivers

- **Results:**
 - Performance and environmental test

- **Summary and Conclusions**
Rugged Photonic TX and RX Contacts

- Hermetic GaAs laser and photodiode
- SiGe driver and limiting amps
- No microprocessor or memory
PCB-Mounted Photonic Transceivers

- Uses same circuitry as photonic contacts
- High-speed electrical PCB-mount connector with screw attachment
- Glenair GC or ARINC801 removable optical connector

Fiber Optic connectors support high vibration & shock applications
Easy installation or replacement

High Speed electrical PCB connector
Easy installation or replacement
No soldering required

ESA ScyLight Workshop, ESTEC, 8 February 2017
Environmental Test Results

- **Accel. Aging:** +85C, 2000 hours
- **Radiation:** 250 Krad Gamma, 2.5×10^{12} Neutrons/cm2
- **Temp. Cycling:** 1000 cycles, -55C to +125C
- **Vibration:** 54 Grms, 2 hours per axis
- **Shock:** 650 G, 0.9 ms, 10 shocks/axis
- **Humidity:** MIL-STD 883, temp cycling, 10 days
- **Altitude:** 70,000 feet
- **Explosive Decompression**
- **Passed all above tests**
Summary and Conclusions

- Developed rugged photonic transceivers for aerospace applications
 - Hermetic GaAs lasers and photodiodes
 - SiGe electronics
 - No microprocessors or EEPROMs
 - Widely deployed in mil/commercial aero applications
- Test results to date are promising for space
 - High shock, vibration, thermal extremes
 - 250 Krad Gamma and 2.5x10^12/cm^2 neutrons
- Future Plans
 - Protons, Heavy Ions, 10 Gbps parallel optics
- Collaborations are desired

rlogan@glenair.com

ESA ScyLight Workshop, ESTEC, 8 February 2017