

NanoBob A Secure Quantum Communication CubeSat Concept for Quantum Key Distribution

Grenoble University Space Center Centre Spatial Universitaire de Grenoble (CSUG)

IQOQI Vienna, Austria Institute for Quantum Optics and Quantum Information

> ESA, Scylight Meeting February 8, 2017

IQI Quantum Communication Competition

Nina (XD-2 QUantum Experiments at Space Scale) launched August 16, 2016, the 00-kg Mozi (or Micius) satellite, a collaboration between the Chinese and Austrian cademies of Sciences. It has on board a photon-pair source to establish quantum ownlinks to two far apart ground stations on Earth.

Irope (Space-QUEST) consortium including the IQOQI (PI) and 42 international partners: Indamental physics using downlink from the International Space Station (ISS)

inada, Institute for Quantum Computing, U of Waterloo (T. Jennewein) and U of Toronto Institute for Aerospace Stu EYSsat uplink ongoing feasibility study using COM DEV Ltd.'s AIM-class 70 kg microsatellite bus.

ngapore Center for Quantum Technologies (Alexander Ling): in-orbit demonstration of cubesat subsystem technolo

pan, QE, National Institute for Communications Technology, Tokyo: space-based quantum emulation experiment us e SOCRATES 50-kg class microsatellite.

SA, Los Alamos National Laboratory (Richard Hughes): ISS feasibility study and on-going proof-of-principle experime

IQI Motivations

ur society relies ever more on secure communication ...

- A number of actors willing to pay a premium to assure absolute security of selected information
 - Intelligence and National Security Agencies
 - Defense
 - Telecom Operators and their end-customers (tech firms, hospitals, etc..)
 - Blockchain technology: crypto-currencies (Bitcoin), high value supply chain, ...
- Europe lags behind the international competition in quantum communication
- Cubesat is an ideal vehicle to demonstrate the QKD technology in Space
 - Potentially a means to bring down costs
 - Spatial and temporal coverage: constellations, short time-to-launch
 - More and more optical communication in space : embarked optical source, optical inter-satellite links, ground stations links, satellite optical tracking know-how

Key Success Factors

Instrumentation Miniaturization & Quantum Cryptography expertise

IOI Mutual complementarity of proposed European partnersh Instrumentation miniaturisation & cryptography expertise

enoble space activities:

- History
- Local Laboratories and enterprises ecosystem
- Grenoble University Space Center (CSUG)
- Keywords: Miniaturized Instrumentation, Science and Data exploitation

enna IQOQI (Zeilinger & Ursin groups):

- Internationally recognized leader in quantum communication
- Extensive experience with free-space demonstrations on Earth
- 144-km record holder of free-space QKD
- Optical Ground Station infrastructure, single photon sources

IOI Mutual complementarity of proposed European partnersh Instrumentation miniaturisation & cryptography expertise

enoble space activities:

- History
- Local Laboratories and enterprises ecosystem
- Grenoble University Space Center (CSUG)
- Keywords: Miniaturized Instrumentation, Science and Data exploitation

enna IQOQI (Zeilinger & Ursin groups):

- Internationally recognized leader in quantum communication
- Extensive experience with free-space demonstrations on Earth
- 144-km record holder of free-space QKD
- Optical Ground Station infrastructure, single photon sources

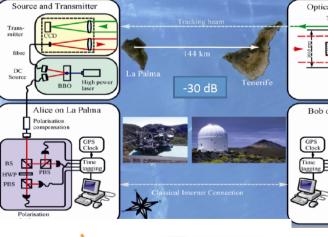
IOI Mutual complementarity of proposed European partnersh Instrumentation miniaturisation & cryptography expertise

enoble space activities:

- History
- Local Laboratories and enterprises ecosystem
- Grenoble University Space Center (CSUG)

Keywords: Miniaturized Instrumentation, Science and Data exploitation

enna IQOQI (Zeilinger & Ursin groups):


- Internationally recognized leader in quantum communication
- Extensive experience with free-space demonstrations on Earth
- 144-km record holder of free-space QKD
- Optical Ground Station infrastructure, single photon sources

DELPHIN

UNIVERSITÉ

Grenoble Alpes

renable

soitec

COLIS Planfay

AIR LIQUIDE

Radial

Saint- e2V Bringing

GRENOBLE

EAS

IQI NanoBob Mission Objectives

- emonstrate Quantum Key Distribution > 500 km with a CubeSat
- Demonstrate the first cubesat, full quantum uplink using entangled photons
- 100% European Project
- Miniaturized Implementation, demo at 808 nm, or at 1550 nm
- Cubesat launch 2020
- Low cost (secure key demo ~k€/Mb, forecast <100 €/Mb)

emonstrate fast classical optical communication ~500 km·Gb/s

onstruct an accurate background light pollution map VIS and/or IR

 Using the high spatial resolution and single photon counting near urban areas

PBS HWP

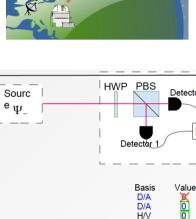
Detector 0

Alice

Basis

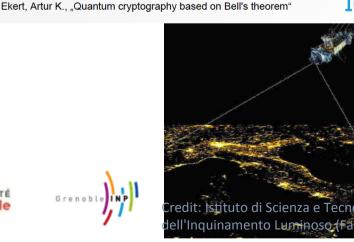
H/\/

D/A

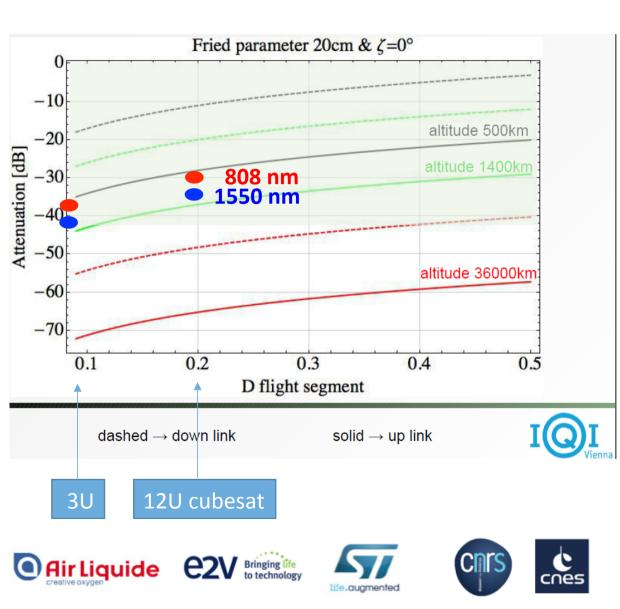

H/V

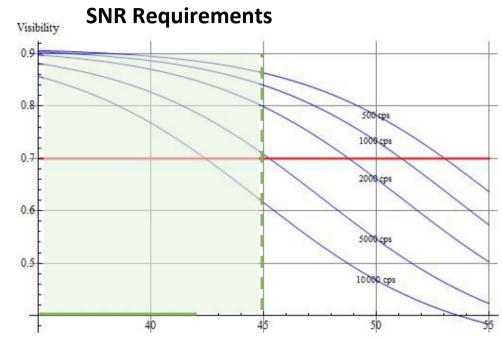
H/V

H/V D/A D/A


D/A H/V

H/V

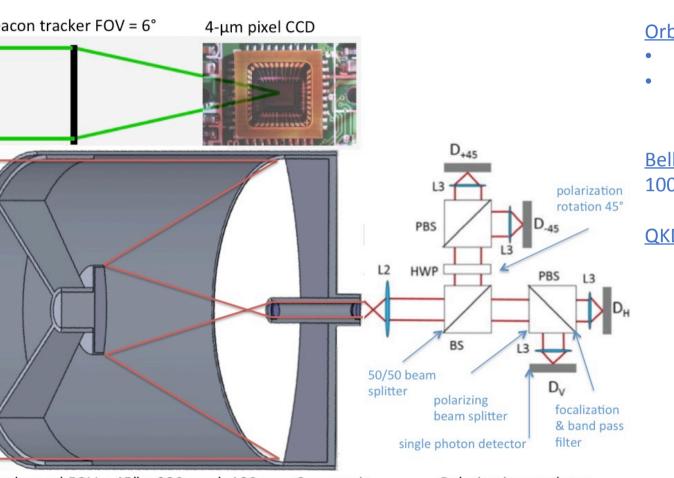



HAV

D/A

IOI NanoBob link budget & background counts

Visibility (polarization correlation) vs. Link atten for different values of background counts


To generate a secret key a Visibility (SNR) > 0.7 needed --> red line (45 dB / background < 5000

IQI NanoBob key mission specifications

channel FOV = 45" = 220 μrad; 180-mm Cassegrain

Polarization analyzer

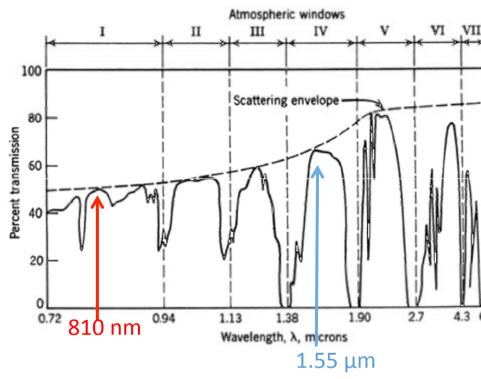
12U Cubesat working hypothesis

Orbit

- altitude 500 km 700 km, 2-year mission duration
- OGS-satellite tracking from at least -60° to 60° from experiment duration \geq 240 s

Bell-test (security verification)

1000 coincident counts to assure 3-sigma verification


QKD: minimum key length per passage > 10^5 (< 43 dB line

IOI NanoBob detectors

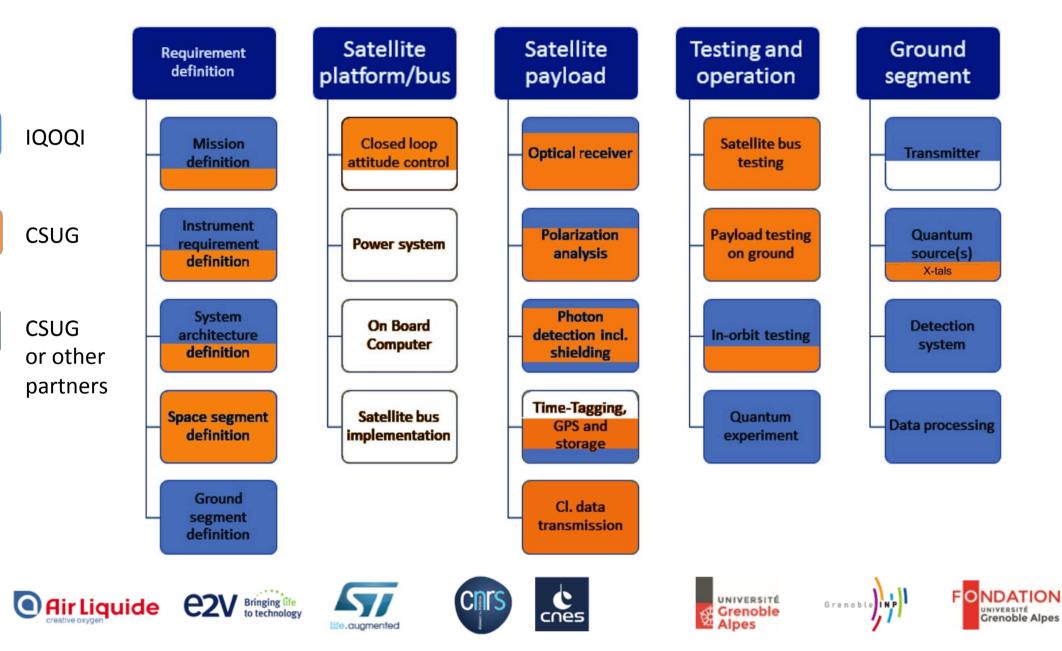
- ellite payload: 4 Si-AP @ 0.8 μm, InGaAs or MCT @ 1.55 μm
- photon detection efficiency > 40%
- dark count rate < 1000 cps
- Timing jitter < 1 ns
- After pulsing <3%
- Count rate > 10 MHz

Radiation studies performed by Singapore and Canada groups

IS (800 nm) Si-APD 500	NIR (1550 nm) InGaAs/InP-APD fiber coupled	NIR (1550 nm) MCT 160
_	-	_
500	fiber coupled	160
		100
-30	-90	-120
< 200	200	1000 ?
75%	< 25%	> 60%
400	200	< 100 ps
25	100	0.3
1	> 2 (up to 100)	< 1
Quantique/	IDQuantique/	CEA-Sofradir
	ID230	
	400 25 1	400 200 25 100 1 > 2 (up to 100) Quantique/ IDQuantique/

<u>1550 nm versus 808 nm</u>

More difficult at 1550 nm (diffraction, cooling) but compatible with standard telecomm blocks Additional link losses ~11 dB to be compensated **Source improvement and/or adaptive optics**.



IOI NanoBob functional chart / WP partitioning

NanoBob project key take-aways

- Optical secure link : the next BIG THING in space ?
- The NanoBob project is a European project focusing on the use of entangled photons for very first European QKD demonstration using a CubeSat platform
- Compatible with existing 808-nm experience and translatable to 1550-nm (challenges to move from 808 nm to 1550 nm well understood and solutions identified)
- Timely and cost-effective space demonstration (4 to 5 M€ consolidated cost, including launch)
- Promising IQOQI CSUG partnership with complementary skills
- Open to strengthening the consortium with more partners
- Paving the way to near-term (very) secure telecommunication

