ScyLight Optical Technology Roadmap for SatCom

ScyLight Programme Team
12/07/2017
DRAFT ScyLight Optical Technology Roadmap for SatCom

ScyLight Programme Team & European/Canadian Industry

12/07/2017
Workshop on ScyLight Optical Technology Roadmap for SatCom

Agenda - AM

Presentations

9.45 ESA Dr. Hauschildt – ‘ARTES ScyLight Roadmap presentation’

Coffee-Break

10.30 Vialight, Mr Müncheberg – ‘Laser terminals and ground stations for LEO missions – Status, way forward and feedback to ScyLight Workplan’

10.50 DLR, Mr Fuchs – ‘Optical satellite downlinks at DLR’

11.10 Tesat, Dr Zech - ‘TESATs LaserCom Product Line

11.30 – 13:15 Lunch Break (& ESA Lunch Lecture in same room)
Agenda - PM

Presentations

13.30 Fraunhofer IOF – Dr Beckert - ‘The Engineering Model of a high efficient entangled Photon Source for QKD’

13.50 Thales Alenia Space FR – Mr Le Kernec - ‘Thales Alenia Space Optical Communication’

14.10 mBryonics Ltd – Dr Mackey - ‘Technology development for end-to-end Lasercom systems in the 5G era’

14.30 Gooch & Housego – Dr Kehayas

15.10 ALTYN Mr Achache

15.30 AIRBUS Mr Haag

15.30-15.45 Coffee-Break

15:45 Bi-Laterals in room BF304, as per individual schedules (15min each)
Optical Telecommunications

Optical telecommunication is the use of light (optical frequency domain) to transmit information:

- Wavelengths 0.85 μm to 10 μm (30-353 THz)
- Alternative to the increasing scarce RF spectrum.
- Optical communication offers an unregulated, extremely broad spectrum
World of Optical Telecommunications

Optical link

Inter-satellite optical networks

GEO

GEO - LEO

LEO

High Alt Platform - Satellite

UAV - Satellite

Aircraft - Satellite

GEO - Earth

10km

30km

Optical payload

LEO - LEO

Fibre networks

NOT TO SCALE
World Market Demand and Opportunities

- Fixed broadband (e.g. HTS - High throughput satellite) and mobile market (e.g. aeronautical, maritime and land) are pushing the satcom capacity demand.
- This capacity needs to be used where needed: Traffic Flexibility in terms of bandwidth allocation and coverage
- Secure communication and service immune to interferences and jammers
- Lower frequencies under threat for satcom applications.
- Conventional RF frequency spectrum becomes a scarce resource.

Optics is a natural step to unleash resources (bandwidth, high capacity) and fulfil this growing demand.
Demand and Opportunities Expressed by European Satellite Operators

- All major European Satellite Operators have expressed interest in Proof-of-Concept Optical Technology as a stepping stone into its adoption in their operational satellite fleet.
- Interest expressed in using optical communications for GEO-ground, GEO-GEO, GEO-LEO, MEO-MEO, and LEO/MEO-ground.
- Different motivational factors:
 - Freeing RF spectrum for user links (optical feeder links).
 - Data security to deliver to certain users (optical downlink).
 - Communication between space assets (inter-satellite links).
Where Optical Technologies Can Make a Difference: Opportunities and Challenges

Optical Link

Pros:
- High data rate (>100 Gbps) with small telescopes
- Abundant unregulated bandwidth and effective use of frequency resources
- Immunity to interception, jamming, interferers and piracy
- Terrestrial optic technology enable space market (investment already made)
- Reduced size/power of ground terminals
- Potential to reduce the number of gateways for HTS architectures

Cons:
- Less mature technology requires R&D effort
- Higher precision laser pointing (but demonstrated)
- Lack of common communication standards

For links through the atmosphere:
- Cloud blockage requires a network of connected ground stations at suitable locations
- Atmospheric conditions (scintillation, beam wander, phase coherence...)
- Eye safety requirements
Where Optical Technologies Can Make a Difference: Opportunities and Challenges

Optical Payload

Pros:
- Low volume and high speed optical harness
- Signal multiplexing without intermodulation
- Immunity to interference
- Generic and frequency independent equipment
- Enables all-optical end-to-end systems “fibre in the sky”
- Some building blocks are available from the terrestrial market

Cons:
- Immature or non-existing technology (e.g. narrow band filters)
- No flight heritage
- Additional RF/optics conversions needed
- High speed on-board signal processing required
- Marginal benefit for low and medium complex payloads
Achievements and Trends of Terrestrial Optical Telecommunications

Space optical communication technology as of today
ARTES ScyLight – a quick reminder

The objectives of ScyLight are:

- Address the development and use of innovative optical technologies for SatCom as well as new market opportunities.
- Demonstrate the maturity of optical communication technology to the end user community.
- Support industry to develop capabilities and competitiveness in the field of optical technologies, enabling related emerging market opportunities for products based on the newly developed technologies.

ScyLight will address the following thematic areas:

- Common System & Technologies Activities
- Optical Communication Terminals and components
- Intra-Satellite Photonics / Optical Payloads
- Quantum Cryptography Technologies
ScyLight – Thematic Lines

Core Technology and Products
- ESA Line 1
 - Roadmap
 - System aspects
 - Critical Technologies
 - Atmosphere
 - Standards
- Industry Line 2
 - Terminals
 - Components
 - ISL, RPAS, DTG
 - Optical Feeder Links
- Industry Line 3
 - Intra-Satellite
 - Photonics
 - Optical Payload

Application & Services
- Ind. & Research Line 4
 - Quantum Crypto
 - Quantum Key Distribution

Technology Phase
- Early In-Orbit Demonstrations / Proof of Concept & Creation of Demand
- Product Development & Understanding of Customer Needs
- Market Entry
Unleash full capacity of Optical Communication Technology and ensure competitiveness
History of System and Optical developments for Space

In December 2016, in Lucerne (Switzerland), ESA Member States adopted a ‘Resolution on their Vision of a United Space in Europe in the era of Space 4.0’.
Applications and Impact of Optical Satcom Inter-Satellite Optical Links

- High-capacity data relay links
- Inter-satellite constellation links
- Backbone connectivity

- Government, commercial, scientific users
- Global Real-time data access via (E)DRS/GlobeNet
- High throughput and high volume data dumping
- Security, interference immunity
- Flexible connectivity, direct transmission
- Bi-Directional links, forward tasking

Challenges
- Industrialisation of telescope assembly, frame unit structure, coarse pointing assembly, laser terminal reliability
- Temperature, volume, mass and cost constraints

Technology roadmap

<table>
<thead>
<tr>
<th>Year</th>
<th>EDRS-A</th>
<th>Sentinels</th>
<th>EDRS-C</th>
<th>GlobeNet</th>
<th>S1-C</th>
<th>S2-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

e.g. Sentinel - EDRS (2015), GlobeNet (2021)
Applications and Impact of Optical Satcom Satellite to Ground Optical Links

- Direct data downlink from LEO
 - Government and scientific users, mobile terminals
 - High rate data dumping to ground
 - Immunity to interference and jammers
 - Size/power compatible with small satellites

Challenges
- Volume reductions
- Radiation hardness
- Thermal environment
- Increase the current data rates
- Cost of new optical ground station network
- Operational constraints

Technology roadmap

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-AOGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tesla Optel-u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OGS adapt optics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On-board demonstrator on ISS
Applications and Impact of Optical Satcom: Ground-Satellite Optical Links

- High capacity gateway links
- GEO-ground optical links

- Commercial users for high throughput multi-beam systems (e.g. terabit)
- Virtually unlimited capacity with one single gateway
- Fewer ground stations
- Immunity to interference and jammers, security
- Increases available RF spectrum for user link

Challenges
- Adaptive optics on uplink and downlink
- On-board high speed data processing
- Ground stations at reliable (weather, political) locations
- Cost of new optical ground station network
- Hand-Over Concepts/ConOps

Technology roadmap:

<table>
<thead>
<tr>
<th>Year</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>...</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>feeder link feasibility demo.</td>
<td>Proof of concept</td>
<td>feeder link demo</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Applications and Impact of Optical Satcom
Airborne Optical Links

- Communication with aircraft, UAV, high altitude platforms (HAPs)
 - Government and commercial users
- High capacity
- Link unaffected by clouds for HALEs
 - Security
 - Small terminals
 - French experiment LOLA link demonstrated to ARTEMIS (2006)

Challenges
- High precision laser beam steering
- Vibration and attitude stability
- Optical terminals meeting aircraft technology certification and standards to be developed
- Long lasting/Continuous links require dedicated terminals onboard the satellite

Technology roadmap

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- On-board technology demonstrator (2021)

Demonstrator via EDRS
GlobeNet
Intra-Satellite Photonics/Optical Payload

Conceptual Block Diagram

2. HSSL = high speed serial links.
Intra-Satellite Photonics/Optical Payload

All optical Conceptual Block Diagram

- Receive Section
- Optical Beamforming
- Optical Downconversion
- Optical Analogue-to-Digital Conversion
- Digital Signal Processor (using optical HSSL)
- Optical Digital-to-Analogue Conversion
- Optical Switching
- Optical Upconversion
- Optical Beamforming
- Transmit Section

Optical Multi-LO Generation and Distribution

2. HSSL = high speed serial links.
Applications and Impact of Optical Satcom
Intra-Satellite Photonics/Optical Payload

- Communications
 - Satellite operators

 - High capacity
 - Simplification
 - Mass and power reduction
 - Lower losses, increased efficiency

Challenges
- Vibration and environmental stability, lifetime
- Translation of ground to flight technologies – miniaturization
- System design digital, RF and optical
- A complete payload – not just equipment (to unleash full capabilities)
- Narrow band filtering

Technology roadmap
See following slide

On-board technology demonstrator (2021)
Intra-Satellite Photonics/Optical Payload Technology Roadmap 2017-2025

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Beamforming</td>
<td></td>
</tr>
<tr>
<td>Optical Frequency Conversion</td>
<td></td>
</tr>
<tr>
<td>Optical A/D & D/A Conversion</td>
<td></td>
</tr>
<tr>
<td>Optical High Speed Serial Links</td>
<td></td>
</tr>
<tr>
<td>Optical Switching</td>
<td></td>
</tr>
<tr>
<td>Optical Multi-LO Generation & Distribution</td>
<td></td>
</tr>
<tr>
<td>(All) Optical Demo</td>
<td></td>
</tr>
</tbody>
</table>

- **Photonic frequency conversion unit**
- **Photonic RF filtering**
- **Frequency downconversion unit & sampler**
- **Optical Interconnects**
- **Photonic routing unit**
- **Photonic distribution of RF LOs**
- **Photonic frequency generation unit**
- **(all) optical demo mission**
- **ASICs with embedded optical I/Os**
Photonic Integrated Circuits - Microphotonics

ESA is in the forefront of introducing micro-photonics in its COMSAT PLs. Currently microphotonic technologies are considered for most equipment involved in Microwave Photonics Payloads:

- Photonic Frequency Generation Unit
- Photonic Frequency Conversion Unit
- Photonics Routing Unit
- Photonic RF Filtering
- Photonic Beam Forming

![Fig. 4 3D model of the fabricated chip (55 mm x 35 mm)](image1)

![Fig. 5 a) Fabricated chip in Triplex™; b) Control Board for thermo-optic tuning](image2)
Applications and Impact of Optical Satcom System activities

- System Studies
 - Government and commercial users
 - Marketing
 - Technology
 - Safety
 - Atmospheric modeling and long term monitoring
 - Complete end-to-end system uses

Challenges
- Site diversity/modeling
- Space Standards on optical are missing – including safety
- Identifying new market opportunities or expanding existing markets
- Technology gap or products

Technology roadmap

<table>
<thead>
<tr>
<th>Year</th>
<th>End2End System</th>
<th>Atmospheric modeling & monitoring</th>
<th>Safe laser use</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Status of Optical Technologies for Telecom Payloads

Quantum Key Distribution (QKD):

- Defense, Government, Financial, Telecom, Utility services
- Counter Quantum computing power - hacking
- Fewer ground stations – removed security risk
- Immunity to interference and jammers - detectable
- International need for secure key distribution

Challenges

- Space Qualified Quantum receivers/transmitters
- QKD Protocol
- On-board and on-ground data processing
- Ground station locations/Atmospheric influence
- Optical Terminals compatible to link budget
- Stringent requirements and size/mass/power constraints
- Concept of Operations

Technology roadmap

<table>
<thead>
<tr>
<th>Year</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2021</th>
<th>....</th>
<th>2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alphasat QKD tests</td>
<td>Chinese QKD satellite</td>
<td>QKD demo from ISS</td>
<td>Commercial QKD mission</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Applications and Impact of Optical Satcom: International Summary

Development and deployment of optical technology on-board satellites

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-satellite optical links</td>
<td>EDRS-A</td>
<td>EDRS-C</td>
<td></td>
<td></td>
<td>Globenet</td>
<td></td>
</tr>
<tr>
<td>Direct downlink from LEO</td>
<td></td>
<td></td>
<td>Tesla Optel-u</td>
<td>OGS adapt optics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gateway and GEO-ground links</td>
<td></td>
<td></td>
<td></td>
<td>LCRD</td>
<td>Gateway link</td>
<td></td>
</tr>
<tr>
<td>Airborne optical links</td>
<td></td>
<td></td>
<td>EDRS demonstrator</td>
<td></td>
<td>Globenet</td>
<td></td>
</tr>
<tr>
<td>Intra-satellite optical payload – please see detailed slide</td>
<td></td>
<td></td>
<td></td>
<td>LO distribution</td>
<td>Multiple Photonic equipment</td>
<td></td>
</tr>
</tbody>
</table>

OPALS: Optical Payload for Lasercomm Science (NASA)
OSIRIS: Optical Space Infrared Downlink System (DLR)
ISS: International Space Station
SOTA: Small Optical Transponder (NICT)
LCRD: Laser Communications Relay Demonstration (NASA)
EDRS: European Data Relay System (ESA)

Globenet EDRS-A

Gateway link

Tesla Optel-u

OGS adapt optics

LCRD

EDRS demonstrator

Globenet

LO distribution

Multiple Photonic equipment
Optical Communications Challenges to be tackle?

Equipment
- Laser terminals
- Adaptive Optics
- Pre-distortion technology
- Ground stations
- Filtering
- Coarse pointing mechanisms
- Telescope Assemblies

System
- Atmospheric modelling
- System definition
 - Standards:
 - Safety
 - Signals
 - Modulation
 - Coding
 - Acquisition strategy

Technology
- Size and power compatibility
- Flight qualification
- Market identification and penetration
- Reliability
- Wall-plug efficiency of lasers and amplifiers

Additional points:
- Standards:
 - Safety
 - Signals
 - Modulation
 - Coding
 - Acquisition strategy

- Ground stations
- Pre-distortion technology
Conclusions (1/2)

- Optical communication is still a brand new solution with unique, not yet unleashed potential
- The DRAFT roadmap has identified potential applications and the main challenges. Excellent results have already been achieved.
- Europe is currently in the lead for optical inter-satellite communications, however:
 - Non-ESA countries, USA & Japan in particular, are moving quickly, targeting full optical systems within 10 years.
 - ESA is implementing and running activities to increase the TRL level for key technologies/products in ScyLight, ARTES C&G/AT and TRP.
 - ESA needs to undertake a substantial system study to analyse technical requirements, assess the feasibility
 - ESA needs to proof the maturity of the technology and define solid solutions
- Optical technologies cover the entire value chain: an opportunity for small and medium-size enterprises.
- .
Conclusions (2/2)

• Via ScyLight and ARTES, ESA is continuously supporting optical technologies to bring the optical technology to commercial success.
• BUT....

• What is missing?
• Where are uncovered gaps?
• What are the challenges identified by Industrial Players?

• If not today in your presentations and bi-laterals, please provide any comments or additions that you wish to share:

 ScyLight@esa.int
<table>
<thead>
<tr>
<th>Activity Ref.</th>
<th>Title</th>
<th>Priority</th>
<th>Planned for</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL.001</td>
<td>Optical technologies for next generation communication satellites
System and sub-system performance requirements for the next generation VHTS and a development roadmap for the critical enabling technologies.</td>
<td>P1</td>
<td>Q4/17</td>
</tr>
<tr>
<td>SL.002</td>
<td>Optical technologies for next generation optical inter-satellite links
System and sub-system performance requirements for the next generation of optical inter-satellite links and a development roadmap for the critical enabling technologies.</td>
<td>P1</td>
<td>Q3/18</td>
</tr>
<tr>
<td>SL.003</td>
<td>Optical communication requirements for scientific missions and the Moon village
System and sub-system performance requirements for scientific missions or in general long distance communications and a development roadmap for the critical enabling technologies.</td>
<td>P2</td>
<td>n/a</td>
</tr>
<tr>
<td>SL.004</td>
<td>Guidelines for the safe use of laser technology
In this activity the various risks associated with the use of laser technology in the implementation and operation of a satellite communication system shall be identified and categorised. Handling and operational constraints and protection measures shall be established for each of the identified risk scenarios and consolidated in a set of safety guidelines for industry and operators.</td>
<td>P1</td>
<td>Q1/18</td>
</tr>
</tbody>
</table>

Priority P2 = ESA ITT only issued on request by Delegations
ARTES ScyLight work plan activities - current

<table>
<thead>
<tr>
<th>Activity Ref.</th>
<th>Title</th>
<th>Priority</th>
<th>Planned for</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL.005</td>
<td>Atmospheric monitoring to assess the availability of optical links through the atmosphere</td>
<td>P1</td>
<td>Q4/17</td>
</tr>
<tr>
<td></td>
<td>Improved knowledge of the optical link availability for selected optical ground station locations and validation of long term optical link availability prediction methods.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL.006</td>
<td>Uninterrupted handover for optical earth-space links using site diversity</td>
<td>P1</td>
<td>Q1/18</td>
</tr>
<tr>
<td></td>
<td>Validated site diversity concepts for optical earth-space links.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL.007</td>
<td>Assessment of analogue optical links through the atmosphere</td>
<td>P1</td>
<td>Q2/18</td>
</tr>
<tr>
<td></td>
<td>Demonstration of reliable analogue optical links through the atmosphere.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL.008</td>
<td>Space assessment of optical amplitude modulators</td>
<td>P2</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Understanding of the environmental effects (e.g., temperature, radiation, charging) impacting the bias point behaviour of optical amplitude modulators.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verification of countermeasures to minimise drift of the bias point of amplitude optical modulators.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Priority P2 = ESA ITT only issued on request by Delegations.
ARTES ScyLight work plan activities - current

<table>
<thead>
<tr>
<th>Activity Ref.</th>
<th>Title</th>
<th>Priority</th>
<th>Planned for</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL.009</td>
<td>Photonics phased array for optical feeder links</td>
<td>P1</td>
<td>Q1/18</td>
</tr>
<tr>
<td></td>
<td>Feeder link technology based on photonics phase shifters, without deformable mirrors.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL.010</td>
<td>Use of secure optical communication technologies to protect European critical infrastructure</td>
<td>P1</td>
<td>Q3/17</td>
</tr>
<tr>
<td></td>
<td>Technical and operational requirements for the protection of critical infrastructure by space-based systems and a development roadmap for the critical enabling technologies.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL.011</td>
<td>Quantum key distribution protocols for space applications</td>
<td>P2</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Model for quantum key distribution protocol performance prediction and a development roadmap for the critical enabling technologies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL.012</td>
<td>Space qualified faint pulse laser source for quantum key distribution</td>
<td>P2</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Increase the technical readiness level of faint pulse laser sources suitable for quantum key distribution applications from 5 to 7.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Priority P2 = ESA ITT only issued on request by Delegations
ARTES AT activities – 2018 work plan

<table>
<thead>
<tr>
<th>Activity Ref.</th>
<th>Title</th>
<th>Priority</th>
<th>Planned for</th>
</tr>
</thead>
<tbody>
<tr>
<td>5C.353</td>
<td>Compact high power laser source for low earth orbit to ground use</td>
<td>P1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The objective of the activity is to develop a high power compact directly modulated laser source for data transmission between LEO satellites and ground with an average output power greater than 1W and with a beam quality factor of less than 1.3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5C.364</td>
<td>Large scale integrated photonic switch matrix</td>
<td>P1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The objective of the activity is to develop a packaged, photonic integrated switch matrix as needed for on board photonic front ends with at least fifty individual input and outputs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3B.035</td>
<td>Optical feeder-uplink pre-compensation based on double-stars</td>
<td>P2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The objective of this activity is to carry out a measurement campaign and develop waveform pre-compensation model based on information coming from double-stars.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Priority P2 = ESA ITT only issued on request by Delegations
Wrap up – Feedback on the ScyLight Roadmap

Confirmation of ScyLight Concept on:

- Need for Networking between industrial partners ✓
 - also for development of building blocks or subsystems
- System Level Aspects important ✓
- Early In Orbit Demonstrations required (e.g. ScyLight Demo Phase) ✓
- Need for Standardization activities in different bodies ✓
- Need for coordination ESA/EC
- BUT: we need to speed up...

Additional Topics for the Roadmap and the Line 1/ESA Workplan

- Constellations Technology/LEO-LEO ISLs
- Mass and Cost Reduction/Series Production Methods
- Precision Engineering Methods
Comments?

Please provide any comments or additions that you wish to share after todays presentation:

ScyLight@esa.int

Note 1: Presentations will be made available via the ScyLight Web pages
Note 2: Pickup for the bi-lateral Meeting will be at the reception/main entrance