ASMS2004 Tutorials

DVB-S2
Giovanni E. Corazza
Noordwijk, Sep 20, 2004

Motivation for DVB-S2

- DVB-S2 is the second generation DVB system for broadband satellite services
- DRAFT ETSI EN 302 307 (2004-01)
- The DVB-S legacy:
 - DVB-S is an extremely successful standard
 - DVB-S was devised for broadcasting applications where
 - the physical layer is fixed
 - and optimized for the worst-case
 - For unicast applications this worst-case design approach causes a large waste of satellite resources
- DVB-S2 is designed to increase spectral efficiency and quality
- DVB-S2 does so by combining:
 - Adaptive Coding and Modulation (ACM)
 - Near Shannon-limit Forward Error Correction (FEC)
 - Multi-spot Ka-Band satellite antenna
 - New video and audio coding schemes can be used

DVB-S2 Applications

- Broadcast Services (BS)
 - BS as for DVB-S, but with the added flexibility of VCM (Variable Coding and Modulation) enabling different levels of protection for each service (e.g. robust SDTV, with less-robust HDTV)
 - BC-BS (backwards compatible broadcast services) for interoperability with DVB-S decoders, and a more optimised NBC-BS (non-backwards compatible)
- Interactive Services (IS)
 - IS are provided with existing DVB return channel standards (e.g. RC-PSTN, RCS, etc.)
 - DVB-S2 can operate in CCM (constant coding & modulation) and ACM (Adaptive Coding and Modulation) modes
 - Digital TV Contribution and Satellite News Gathering (DTVC/DSNG)
- DTVC/DSNG builds on the DVB-DSNG standard, facilitating point-to-point, or point-to-multipoint communications of single or multiple MPED transport streams using either CCM, or ACM modes.
- Professional Applications (PS)
 - E.g. data content distribution/trunking, using CCM, VCM or ACM
ACM Background

INTERFERENCE DISTRIBUTION: ACM exploits the entire C/I range

ATMOSPHERIC CONDITIONS: ACM maximizes instantaneous data-rate as a function of time/location

How does ACM operate?

According to the user SNR, the system selects the optimum couple [code-rate / modulation]

Shannon bound for M-ary modulations

<table>
<thead>
<tr>
<th>Modulation Scheme</th>
<th>Losses from Shannon Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPSK</td>
<td>1.76 dB</td>
</tr>
<tr>
<td>8PSK</td>
<td>2.2 dB</td>
</tr>
<tr>
<td>16QAM</td>
<td>4.1 dB</td>
</tr>
<tr>
<td>32QAM</td>
<td>5.1 dB</td>
</tr>
<tr>
<td>64QAM</td>
<td>7.5 dB</td>
</tr>
</tbody>
</table>
Discretization for coded M-ary modulations

DVB-S2: Tx Block Diagram

Mode Adaptation

MA (Mode) \(UPL = \text{Number of UPs} \)
\(DFL = \text{Dr} \)
\(\text{SYNC} = \text{Synchronization bit} \)
CRC applied to BBHEADER

UPL (User Packet Length) = constant value, 188 bytes (MPEG)
FEC encoding

- Encoding is performed in three stages:
 - Outer coding → BCH
 - Parity check bits (BCH) are appended to BRFEC
 - Inner Coding → LDPC
 - Parity check bits (LDPC) are appended to BCH field
 - Bit interleaving
- Each BRFEC (K_BCH bits) are processed by the FEC coding subsystem to generate a FEC parity, K_LDPC bits

BCHcode	LDPCcode	N_BCH	K_BCH	N_LDPC	K_LDPC

Coding parameters

- Two different FEC formats are available:
 - The “normal” FEC format: N_LDPC = 64800
 - The “short” FEC format: N_LDPC = 16200
- Available code rates: 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, 9/10

Low-density parity-check codes

- Discovered by Gallager (1961)
- Rediscovered during 1990’s by Mackay
- Block codes that have parity-check matrix H |
- Every row and column of which is “sparse”
 - Regular LDPC
 - Every column of H has the same weight j
 - Every row as the same weight k
 - Irregular LDPC
 - Every column and row of H has a particular rate X and check-node degree
- Defined also in terms of sparse random graphs
 - Their property is that each constraint involves a small number of variables in the graph
 - The number of edges in the graph scales roughly linearly with K rather than quadratically
 - Randomness ensures a good code while sparseness enables efficient decoding
- Decoded by a simple probability-based message-passing algorithm
 - Most used in the sum-product algorithm
 - Is not the optimal decoder
 - Results are record-breaking
Message Passing

- Practical codes should have simple coding and decoding, but generally the decoding requires a lot of time and resources
- This problem can be solved by message-passing algorithm
 - Complicated calculations are simple distributed among simple processors
 - After a few steps the solution of the global problem is available

Message Passing

- This algorithm can be used if the “soldiers” are arranged in a graph that contains no cycles!
- If there are cycles, a modified message-passing algorithm must be used
 - Cycles are opened and a cycle-free graph (tree) is obtained

Sum-product algorithm: the most likely path

- The sum takes place at each node by adding messages from predecessors
- The product comes in by weighting terms in the sum
- The sum-product algorithm is a form of belief propagation
Code Construction and Decoding

- There is a relationship between the locations of 1's in the matrix and
 - the cycles in the code graph
 - the number of decoding iterations
- Good codes should have graphs without short cycles (closed loops)
 - A closed loop in parity-check matrix is a sequence of connected alternating horizontal and vertical lines
 - The last line in the sequence terminates at the beginning of the first line
 - Every line stats in a vertex, which is a point where the parity check matrix contains a 1
- The sum-product decoding algorithm is optimal if there are no cycles → sub-optimal with cycles
- Increasing the matrix size, it becomes easy to produce matrices without cycles of any given length → it is possible to ignore cycles

DVB-S2: Bit-Interleaver

- Performed only for 8-PSK, 16-APSK, and 32-APSK modulation schemes
- LDPC encoder output is interleaved using a simple block interleaver
 - Interleaving depth is a function of the adopted modulation format

Modulation Schemes

- LDPC codewords are mapped into the following constellations:
 - QPSK
 - 8-PSK
 - 16-APSK
 - 32-APSK
Mode Adaptation

- The receiver estimates the instantaneous SNR
- This is fed-back to the gateway station by the return channel (DVB-RCS)
- The gateway adapts the transmission mode accordingly
- SNR estimation is not a trivial task

SNORE: Analytical Characterization

\[P_1 \sim \chi^2 \left(\frac{1}{2} \frac{\sigma_1^2}{\sigma_2^2} \right) \]

SNORE: Cramer-Rao Bound

\[\sigma^2 \geq \frac{N_0}{2N_p - \frac{3}{4}} \left(\frac{3}{4} \right) \]

Mean Estimation Error

\[\mu_e = \frac{1}{2N_p - \frac{3}{4}} \left(1 + \frac{3}{2} \right) \]

NOISE ACTS BOTH AS NUISANCE AND TARGET!
DVB-S2: more info

- www.dvb.org

ASMS2004 Tutorials

DVB-RCS

Giovanni E. Corazza
Noordwijk, Sep 20, 2004

DVB-RCS Services and Applications (1/2)

- Interactivity in previously under-served locations
- Extend services in areas lacking conventional terrestrial infrastructure

- Internet S
- Applicatic
- UMTS bas
- Digital Su
- Point-to-P
DVB-RCS Services and Applications (2/2)

- For government, education and business:
 - Real-Time services and applications
 - VoIP and Videoconferencing
 - CoLo: Colocation for web servers and web hosting
 - Finance and stock market services
 - Banking and financial services
 - LAN Interconnection: VPNs
 - Distance learning
 - Video, text, voice
 - Telemedicine
 - Interactive TV broadcasting
 - Distributed TV Broadcast
 - IP Multicast and IP Streaming
 - Near Video on Demand (NVoD)
 - Push Services
 - Interactive Gaming

Interactive Network Model

- Broadcast Channel
 - Unidirectional broadband broadcast channel
- Interaction Channel
 - Bidirectional interaction channel between the service provider and the user
 - Return Interaction Path (Return Channel) from the user to the service provider
 - Forward Interaction Path from the service provider to the user
- Return Channel Satellite Terminal (RCST) formed by:
 - Network Interface Unit (consisting of the Broadcast Interface Module and the Interaction Interface Module)
 - Set Top Unit
- The RCST provides interface for both Broadcast and Interaction Channels

DVB-RCS Architecture

- Network Control Centre (NCC)
 - Provides monitoring & control functions
 - Control and timing signals
- Traffic Gateway (TG)
 - Receives the RCST return signals
 - Provides accounting functions
 - Interactive services and/or connections to external public
 - Proprietary and private service providers and networks
- Feeder
 - Transmits the forward link signal
 - Standard satellite digital video broadcast (DVB-S) uplink
 - Are multiplexed the user data and/or the control and timing signals
DVB-RCS Burst Formats

- There are four types of bursts:
 - Traffic (TRF)
 - ATM (152 bytes)
 - MPEG (188 bytes)
 - Acquisition (ACQ)
 - Synchronization (SYNC)
 - Common signaling channel (CSC)
 - Used by an RCST to identify itself during the log-on.

- ACQ and SYNC bursts are required for accurately positioning the RCS.
 - Terminal (RCST) burst during and after log-on.

Channel Coding and Modulation

- Coding for channel error protection is applied to traffic and control data.
- Two alternative coding schemes can be implemented:
 - Turbo code
 - Concatenated code
- In the case of the concatenated coding, the outer code is a Reed-Solomon (RS) code and the inner code is a nonsystematic convolutional code.
- For both coding schemes, a by-passable CRC can be also applied on CSC and SYNC bursts in order to allow error detection.
- Modulation format is QPSK.

Turbo Codes

- Background:
 - Turbo codes were proposed by Berrou and Glavieux in the 1993 International Conference in Communications.
 - Performance within 0.5 dB of the channel capacity limit for BPSK was demonstrated.

- Features of turbo codes:
 - Recursive convolutional encoders
 - Parallel code concatenation
 - Serial code concatenation
 - Nonuniform or “Pseudo-random” interleaving
 - Iterative decoding
Two double-binary Circular Recursive Systematic Convolutional (CRSC) codes

- The most significant bit (MSB) of the first byte is assigned to A, the next to B, and so on.
- Seven coding rates are defined:
 - 1/3, 2/5, 1/2, 2/3, 3/4, 4/5, 6/7
- These rates are achieved by puncturing the parity bits

Turbo Decoder

Turbo Code Performance: AWGN Channel
DVB-RCS: Multiple Access

- The multiple-access capability is either fixed or dynamic slot MF-TDMA.
- The RCS shall indicate its capability by using the MF-TDMA field present in the CSC burst.
- MF-TDMA allows a group of RCSs to communicate with a gateway using a set of carrier frequencies each of which is divided into time-slots.
- The Network Control Center (NCC) allocates to each active RCS a series of bursts (slots), each defined by a frequency, a bandwidth, a start time and duration.

DVB-RCS: more info

- Standard Ref: EN 301 790 Edition: 1.3.1
 - Interaction for Satellite Distribution Systems
- Standard Ref: TR 101 790 Edition: 1.2.1
 - Guidelines for the Implementation & usage of the DVB Interaction Channel for Satellite Distribution
- www.dvb.org

THANK YOU!