BeamSat: Broadband Access over multi-spotbeam Ka-band satellites

Objectives

The scope of the ARTES 5.2 activity BeamSat is to prepare the groundwork and mitigate the risk and challenges for the development of a Ka-band satellite broadband access solution that will support high-rate broadband access to regions deprived from competitive terrestrial broadband solutions.

The main driver for this development will be the broadband market requirement and the move to Ka-band multi-spotbeam satellite technology instead of Ku-band transponders, which makes more satellite bandwidth available for broadband applications and at a significant lower cost.

Because of the available broadband capacity and performance improvements, BeamSat will also be able to support various value added services (VAS) for the consumer market: interactive television, video-on-demand, VoIP and other real-time (gaming) applications; and other professional services such as contribution and backhauling. These values added services will allow the network operator to differentiate himself on the market and run a successful network.

The main goals of the ARTES 5.2 BeamSat project are:

  • To prototype key components of the system, in order to:
    • Anticipate on the requirements to handle the high throughputs associated with Ka-band networks;
    • Improve the QoE of the system w.r.t. current and future services and applications;
    • Tackle and resolve shortcomings of the existing Ku-band broadband access system;
    • Mitigate risk (performance, cost, time to market).
  • To develop test tools and platforms that allow to evaluate the QoE measured on the (prototype) system.

Challenges

The key issues are:

  • Low Cost of ownership for the subscriber;
  • Network capacity;
  • Low network capex and opex cost;
  • Network scalability: support several hundred thousand of user terminals and high overall throughput;
  • Optimal QoE for various services.

 

Benefits

The goal of the ARTES 5.2 activity BeamSat is to perform the required research activities, assess the feasibilities and mitigate the risk for the development of a Ka-band satellite broadband access solution.

The final goal of the entire BeamSat project (ARTES 5.2 & ARTES 3-4) is to accelerate Newtec’s growth within the broadband market and become the major European Broadband supplier next to the American competitors.

 

Features

The broadband solution of the bidirectional Ka-band satellite broadband access network (to be developed in the BeamSat project) consists of:

  • Terminal: an integrated package encompassing the satellite modem, antenna and interactive LNB (with built in upconverter transmitter).

    The features are:

    • Operation in Ka/Ka – band;
    • Operation in Ka/Ka/Ku with Ka-band broadband and Ku-band video broadcast reception;
    • Unicast traffic (10Mbps downstream and 4Mbps upstream);
    • Multicast traffic (up to 50Mbps downstream);
    • Support for several IP-based services;
    • State-of-the-art modulation schemes will be employed in FDW and RTN link.
  • Gateway: a highly scalable gateway supporting multiple Ka-band spotbeams. The total solution will encompass the baseband and the RF part of the gateway.
  • System: The system will support the following traffic enhancement and other features:
    • HTTP pre-fetching for faster web browsing;
    • TCP-acceleration (up to 1 million TCP sessions per beam), compression/encryption;
    • UDP, ICMP, TCP, ARP, FTP, DHCP, Caching protocols, IP forwarding, Multicast, IGMP, HTTP, etc;
    • IPv4 and IPv6;
    • VoIP support and prioritization.

All of this will be developed and deployed following a gradual roadmap.


click for larger image

Plan

The project plan consists of two phases:

  • Phase I - ARTES 5.2: The first phase is the technology investigation phase, in which critical research tasks will be examined and gateway and terminal prototypes will be built.
  • Phase II - ARTES 3-4: The second phase will be the product development phase, in which the actual system will be built, tested and made production ready for a massive consumer market roll-out.

The project will maintain a heartbeat of 6 months, e.g. stage Ia, Ib, Ic, etc. This allows for a pragmatic development in accordance with the market requirements.

 

Current status

  • Stage 1d still covers topics applicable for Ka-band evolution, but focuses next to BeamSat Sat3Play  on  feasibility and research investigation for other RTN link technologies.

    The following topics have been investigated.

    • Traffic Modelling Tool prototyping (TMT) (cooperation with IBBT/PATS – University of Antwerp) to determine the probability distribution of the overall aggregated traffic in the network.
    • Automated Resource Control,  the control plane functions to optimize system efficiency, observe quality of service, resource allocation with fairness and observe operational limits for the satellite and the terminal.
    • The Network Optimisation is an integrated tool that allows to optimise an overall network.
    • Satellite Link bonding – Carrier Ethernet Switches (cooperation with IBBT/PATS – University of Antwerp).
    • RF technology investigation (cooperation with INTEC –Research Department of the University of Ghent)
    • Stage 1e covered  research for the following topics

     

      • Study of algorithms and prototyping for improved TX signal   pre-distortion in order to compensate the non-linearities (AM-AM and AM-PM) of the transponder. The algorithms have been successfully prototyped and are implemented in Newtec’s high speed modem product family.

        They allow to perform pre-distortion for higher order modulation  modes (constellations above 32 APSK) with a better performance and a significantly reduced  complexity

      • Research for improvements of the ACM algorithms for Newtec S2 Extensions modulation/coding schemes. These improvements have been integrated also in Newtec’s high speed modem family.
      • Research and prototyping of channel status estimation algorithms and the behaviour of Newtec’s proprietary Mx-DMA HRC algorithms using saturated BUC’s at the remote site and in the presence of fading channels. This research has led to the implementation of the HRC control plane in Newtec’s Dialog product. The Dialog product is the follow-up of the Sat3Play system and covers 3 RTN link technologies (4CPM, MX-DMA HRC and DVB-S2) in a multi-service satellite communication environment

    Research and prototyping of polarisation switching implementation for the ODU terminal product range.

  • Stage 1f covered  research for the following topics
    • Study of algorithms and prototyping for improved TX signal   pre-distortion on linearized transponders in order to compensate the non-linearities (AM-AM and AM-PM) of the transponder. The algorithms have been successfully prototyped and are implemented in Newtec’s DTH modulator product family.

      They allow to perform pre-distortion for DTH modcods on linearized transponders with a better performance and a significantly reduced complexity

    • Research for improvements on the DVB S2/S2X resulted in improved support for lower rolloff and faster acquisition on the demodulator and phase noise measurements that will be added on the professional demodulators.
    • The Newtec Network Optimisation tool was extended with DVB-S2X modcods, an auto-modcod selection functionality (which automatically selects the optimal modcod for a given network configuration, be it HRC, CPM, DVB-Sx, CCM or VCM/ACM), an introduction to the concept of group CIR and group PIR adaptation to the available bandwidth and an implementation of availability balancing of FW group and RT group
    • Research and prototyping of bandwidth management with the Newtec proprietary Mx-DMA HRC algorithms. This research has led to the improvement of the HRC capacity request algorithm in Newtec’s Dialog product. The Dialog product is the follow-up of the Sat3Play system and covers 3 RTN link technologies (4CPM, MX-DMA HRC and DVB-S2) in a multi-service satellite communication environment

Contacts

Status date

Thursday, March 3, 2016 - 10:34