Very small aperture terminals (VSATs) access satellites in geosynchronous orbits. The link quality is very dependent on the tropospheric situation along the fixed slant path between the terminal and the satellite. However, there are a variety of other parameters too such as the orbital motion of the satellite, the pointing accuracy of the terminal, and thermal drifts of the transmitter/receiver that degrade the link quality. Satellite- and Satellite-Network-Operators are seeking for ways to optimize their service quality and their network operation, since their business is challenged by competition from terrestrial services and by the changing trend in TV consumption as a result of streaming solutions. The SatcomWeather project was initiated to support VSAT operators who have a commercial interest in optimizing VSAT networks and data throughput over time. Hundreds of millions of measured VSAT signals and throughput records will be investigated, with the objective being to classify stations with optimization potential, optimize thresholds for installations, and derive weather data from the VSAT-measurements. Within the project, algorithms to harmonize, access and analyse the data will be developed and a software information tool will be prototyped that guaranties high performance access to the datasets and adequate graphical visualisation.
The planned architecture of the SW is along a high modular system approach. The application operation and data production is triggered via an application programming interface.
The “new SW” produced in this project is a number “SW groups” (consisting of SW modules in Python or Java) and a number of config-files grouped according the product tree.
The first phase (3 months) allows presentation of work at the CDR (Critical Design Review) that includes the following: consolidated users’ needs functional and system requirements, analysis of existing data, design the implementation and implement a set of Proof of Concept functionalities.
The second phase (9 months) is the system implementation phase that is be validated during the TRR (Test Readiness Review), where the first prototypes for use cases are implemented and verified and the first data results are obtained and interpreted.
The last phase (2 months) focuses on the test (internal validation), verification (external validation) of the system and the follow-up project specification validated at the FR (Final Review).
The activity is completed. Outcome and conclusions are: