Funding

This page displays the ARTES Invitation To Tenders (ITTs) which are published on ESA-STAR. If you are looking for a specific element select from the list provided and click on the Apply button to start the search and display the results.

Funding of the individual Prime or subcontractors, for ARTES Core Competitiveness and ARTES Applications activities, is subject to authorisation of the required ARTES budget by the related National Delegations. Therefore, bidding teams are requested to inform their National Delegation(s) of their intention to participate in funded activities already before submitting a proposal.

The official information platform for providing potential bidders all the relevant documentation and details concerning the intended and issued Invitations To Tender (ITTs) for Open Competitions and Direct Negotiations is ESA-STAR - managed and operated by the ESA Procurement Department.

  • SECURE SATCOM MODULE IN SUPPORT OF GLOBAL NAVIGATION SATELLITE SYSTEM SERVICE DELIVERY AND ROBUSTNESS (ARTES 4.0 SPL 4S 3A.196) (ON DELEGATION REQUEST)

    The objective of the activity is to design+ develop and manufacture a ground-based breadboard module allowing existing and auxiliary data from/linked to GNSS services to be securely delivered to their users via satellite communications using a secure protocol.

  • FREQUENCY COORDINATION DEMONSTRATOR FOR NON-GEOSTATIONARY SATELLITE SYSTEMS (ARTES AT 3A.153) (RE-ISSUE OF ITT 1-11179)

    The objective of the activity is to develop and test a demonstrator of a frequency coordination system that manages access to spectrum among different non-geostationary satellite systems. The concept will be implemented and tested as a real-time emulator to be developed as part of the activity.Targeted improvements: Improving the achievable throughput by 50% with respect to partitioning the frequency band.Description:The increasing number of c…

  • IN-ORBIT W-BAND CHANNEL CHARACTERISATION FROM GEOSTATIONARY ORBIT (ARTES AT 3E.018) (ON DELEGATION REQUEST)

    The objective of the activity is to carry out characterisation of the W-band channel affected by diurnal and long duration atmospheric changes, enabling future W-band system sizing. The activity will design, develop and test a W-band terminal hosted on a geostationary Earth orbit (GEO) spacecraft, and the associated ground terminals. Targeted Improvements:Increase in the acquisition time of W-band channel measurements for stable atmospheric pa…

  • ASSESSMENT OF 5G NON-TERRESTRIAL NETWORKS (NTN) WITH SUB-6GHZ TIME DIVISION DUPLEXING (TDD) COMMUNICATIONS (ARTES 4.0 SPL 5G/6G 3F.017)

    The objective is to carry out an assessment of the NTN deployment of the 5G NR air interface in TDD mode and identification of technology gaps and constraints. Develop a software testbed implementing and testing the scenario.Improve the overall spectrum utilisation by up to 50% when using Time Division Duplex communication as per 3GPP standard.The 3GPP has specified for Non-Terrestrial Networks (NTN) the n255 and n256 bands, both operating in…

  • LUNAR OPTICAL COMMUNICATION PHOTON COUNTING RECEIVER (ARTES 4.0 SL SPL 6C.018)

    Objective: The objective of the activity is the development and testing of an receiver for lunar optical communication in a photon starved regime. Targeted Improvements: Photon-starved optical communications data and tracking receiver with 8 times increased bandwidth (1 ns versus 125 ps). Description: A photon-counting detector receiver package for free-space communications between a lunar satellite and Earth-based ground terminal does not exi…

  • POWER EFFICIENT USER PLANE FUNCTIONS FOR B5G SMALL SATELLITE PLATFORMS (ARTES 4.0 SPL 5G/6G 3F.016)

    Objective:The objective of this activity is to develop and test a power efficient 5G User Plane Function (UPF) prototype, implemented onto space enabled hardware platforms. The development will leverage concrete laboratory results of various RAN splits and compensate for their impact on the 5G protocol stack. Finally, system integration with a ground segment control plane will be tested, over emulated LEO constellationsTargeted Improvements:-…

  • MULTI-BEAM RECEIVE ANTENNA FOR SATELLITE-BASED AIR TRAFFIC SURVEILLANCE (ARTES 4.0 AT 5B.225)

    Objective: The objective of the activity is to design, implement and test a scaled engineering model with critical functions of a multi-beam receive antenna for satellite-based air traffic surveillance in the frequency range 950 - 1100 MHz, taking into account narrow beamwidth, directivity and mechanical constraints. Targeted Improvements:- Two-fold increase, compared to the state of the art, in the number of beams covering the visible Earth (…

  • PACKAGING OF PHOTONICS FOR LASER COMMUNICATION TERMINALS (ARTES 4.0 SL SPL 5F.029)

    Objective: The objective of the activity is to develop and test different sized packaging solutions with optical and electronic feed-throughs, which allow commercial photonic chips to be deployed in space. Targeted Improvements: By developing innovative packagingtechniques, some types of high-volume parts developed for terrestrial telecommunications markets can be made available for space. Description: This activity aims to establish a packagi…

  • PROTECTION OF SATELLITE COMMUNICATIONS GROUND SEGMENT FROM INTERFERENCE/JAMMING INITIATED FROM LEO CONSTELLATION(S)  (ARTES 4.0 SPL 4S 3D.030)

    The objective of the activity is to examine the potential threat of New Space constellations to form a botnet able to generate intentional interference for other communications satellites, and to propose and assess relevant mitigation mechanisms.

  • ARTIFICIAL INTELLIGENCE-BASED SYSTEM FOR AUTONOMOUS ON-BOARD FAILURE ISOLATION, RECOVERY, AND RESOURCE OPTIMISATION FOR TELECOMMUNICATION CONSTELLATIONS (ARTES AT 4A.099) (ON DELEGATION REQUEST)

    The objective of the activity is to design, develop and validate an on-board software relying on Artificial Intelligence that autonomously detect, isolate and recover failures at spacecraft level and that performs resource optimisation at constellation level to recover and improve the overall availability of the service.Targeted Improvements: - Enabling autonomous FDIR management at the level of constellations.- Enabling autonomous performance…

  • DATA, CONTROL AND SIGNALLING PROTOCOLS FOR SPECTRUM SHARING AMONG CO-EXISTING SATELLITE INTERNET-OF-THINGS NETWORKS (ARTES AT 3C.044) (ON DELEGATION REQUEST)

    The objective of the activity is to develop and test data, control and signalling protocols to enable spectrum sharing among co-existing satellite Internet-of-Things (IoT) networks for new frequency allocations (i.e. below 5 GHz according to resolution 812 WRC 2019) that are on the agenda of the World Radio-Communication Conference (WRC) in 2027. The activity will include a measurement campaign to quantify the interference environment using ex…

  • DIRECT CHIP COOLING WITH PULSATING HEAT PIPES (PHPS) (ARTES AT 4D.086)

    The objective is to develop and test a direct chip to baseplate thermal concept based on Pulsating Heat Pipes that reduces design complexity and yet widens the operating temperature range and thermal transport performance.Targeted Improvements: - Improved heattransfer performance to at least 60 watts per chip.- Operation in adverse vertical gravity and below -40C- Reduced manufacturing complexity in chip to unit baseplate thermal transport com…

  • ARTES 4.0 TECHNOLOGY AND PRODUCT DEVELOPMENTS ACTIVITY - STANDARD CALL FOR PROPOSALS

    This Call for Proposals covers the industry initiated activities for the four Programmes lines identified below:ARTES Core Competitiveness Generic ProgrammeLine- Component B: Competitiveness GrowthARTES Strategic Programme Line Space for 5G/6G and Sustainable Connectivity ARTES Strategic Programme Line Space Systems for Safety and Security (4S) ARTES Strategic Programme Line Optical and Quantum Communication - ScyLight. The participating stat…

  • UNCOORDINATED SATELLITE ACCESS SCHEME OVER-THE-AIR DEMONSTRATION IN MARITIME VHF BANDS (ARTES AT 3C.030) (ON DELEGATION REQUEST)

    The objective of the activity is to develop and test signal reception techniques that enable uncoordinated satellite access schemesin the maritime bands for VHF Data Exchange (VDE) by a population of maritime transmitters in the presence of in-band interference from maritime and external sources such as in-land terrestrial services. The techniques will be implemented and evaluated in a prototype receiver to be developed as part of the activity…

  • IMPLEMENTATION OF SOFTWARE MITIGATION SOLUTIONS FOR RADIATION-INDUCED SINGLE EVENT EFFECTS (ARTES 4.0 AT 5C.490)

    The objective of the activity is to de-risk software mitigation techniques for radiation effects on a family of high-performance processors embedded in System on Chip (SoC) components. The activity will identify, on one or more processors of interest for the industry, radiation-induced failure modes and will implement appropriate software mitigation techniques with reuse or development of small FPGA IPs if needed. Targeted Improvements: Enable…

  • COMPACT VHF-BAND DIPLEXER FOR SMALL SATELLITE VHF DATA EXCHANGE PAYLOADS (ARTES AT 5E.030)

    The objective of the activity is to design, manufacture and test a compact transmit-receive diplexer engineering model with high isolation, low loss and power handling as required for full duplex VHF data exchange payloads.Targeted Improvements: Enabling technology for full duplex VHF data exchange system (VDES) payloads on small satellite platforms.Description: The World Radiocommunication Conference in 2019 allocated maritime VHF frequencies…

  • NGSO SIMULATOR FOR 5G VEHICLE-TO-EVERYTHING (V2X) (ARTES 4.0 SPL 5G/6G 3A.183)

    Objective: The objective of the activity is to develop and test NGSO networking techniques for 5G V2X services. The developments will be implemented and verified in a simulator modelling realistic system scenarios of 5G LEO satellites. Targeted Improvements: Enabling the provision of 5G V2X services by satellite. Description:Due to their low altitudes, LEO satellite systems may offer low-latency 5G connectivity that, paired with on-board edge…

  • BUFFERBLOAT FREE AND CONGESTION RESILIENT SATCOM NETWORKS (ARTES AT 6B.129)

    The objective of this activity is to design, implement and test active queuing management and packet scheduling techniques at the user terminals and ground equipment, so that the SATCOM network continues to provide seamlessly an acceptable throughput and latency to users under any congestion situation.Targeted Improvements:- Enabling a responsive and fair SATCOM network in any traffic andresources availability situation.- Keeping the addition…

  • ARTES 4.0 SPACE SYSTEMS FOR SAFETY AND SECURITY (4S) ROLLING WORK PLAN 2020-2021

    1. Introduction.Four new technology and product development activities are added in 2021, that have already been identified as useful to the foreseen development of next-generation 4S solutions over the coming years. These work plan activities will be issued under the legal framework of the ARTES 4.0 Strategic Programme Line (SPL) Space Systems for Safety and Security (4S).2. ImplementationPhasing: phasing of the contractual activities may be…

  • LOW COMPLEXITY SOLAR CELLS FOR HIGH VOLUME PRODUCTION (ARTES AT 4F.170)

    The objective of this activity is to develop, manufacture and test new solar cells with new structures, new processes that will increase the throughput.Targeted Improvements: Doubling the production throughput by the introduction of innovative processes with anew solar cell designDescription: Currently the demand of highly efficient solar cells is exceeding the supply and requires to bemuch more competitive. Simplified manufacturing processes…

  • AUTONOMOUS HEALTH MONITORING FOR TELECOMMUNICATION PLATFORM MECHANISMS (ARTES 4.0 AT 4E.089)

    The objective of the activity is to develop and test a computer-assisted approach for in-situ operational health monitoring and anomaly detection for mission-critical platform mechanisms (e.g., reaction wheels, solar array drive mechanisms, antenna pointing mechanisms, laser communication terminals, etc.) in telecommunication spacecraft. Rather than relying on telemetry data, this activity will develop an approach using the full signal and sen…

  • MULTIFREQUENCY TRANSMIT ACTIVE PHASED ARRAYS FOR GROUND TERMINALS CONNECTED WITH MULTI-ORBIT NON GEOSTATIONARY ORBIT SATELLITES (ARTES AT 7A.078)

    The objective of this activity is to design, develop and test enabling technologies for multi frequency transmit active antenna. This will include antenna radiating elements, beamforming techniques and active elements designed to cover Ku and Ka transmit frequency bands for ground terminals connected to non-geostationary multi-orbit satellites.Targeted Improvements: - Mass and size reduction by 30% by sharing components between frequency bands…

  • PREDICTIVE QUALITY OF SERVICE (QOS) PROTOCOL FOR NON-TERRESTRIAL NETWORKS IN SUPPORT OF AUTOMOTIVE SERVICES (ARTES 4.0 SPL 5G/6G 3F.023)

    Objective:This objective of this activity is to develop and test an extended protocol to address the support of predictive Qualityof Service (QoS) in Non-Terrestrial Networks (NTNs). The activity will also undertake the necessary investigation and selection of data-driven algorithms to automate predictive QoS in NTN.Targeted Improvements:Features enhancement to align NTN solutions in an integrated NTN/TN ecosystem in support to automotive serv…

  • IN-ORBIT EXPERIMENT OF BEYOND LINE-OF-SIGHT GROUND TO LEO LINKS USING IONOSPHERIC REFRACTION (ARTES AT 3E.002) (ON DELEGATION REQUEST)

    The objective of the activity is to test the performance of beyond line-of-sight narrow-band communication links between ground andLEO satellites in operational conditions. One of the key aspects of the experiment is the effect of ionospheric refraction and reflection as an enabler of satellite links beyond the line of sight. The activity will include the development of a small payload and aground terminal. Targeted Improvements:Enabling new s…

  • MULTI-CONSTELLATION CONNECTED TERMINAL PROTOTYPE FOR FIXED WING UNMANNED AERIAL VEHICLES (UAV) (ARTES 4.0 SPL 4S 7A.075)

    The objective of this activity is to design, develop, test in a lab environment and over representative conditions a multi-constellation broadband UAV terminal prototype, i.e. a fixed-wing UAV terminal prototype including modem and RF front-end, that transmits via multiple beams towards multiple satellite orbits (GSO or NGSO) high data rate payload data to both commercial and governmental frequency bands.