Funding

This page displays the ARTES Invitation To Tenders (ITTs) which are published on ESA-STAR. If you are looking for a specific element select from the list provided and click on the Apply button to start the search and display the results.

Funding of the individual Prime or subcontractors, for ARTES Core Competitiveness and ARTES Applications activities, is subject to authorisation of the required ARTES budget by the related National Delegations. Therefore, bidding teams are requested to inform their National Delegation(s) of their intention to participate in funded activities already before submitting a proposal.

The official information platform for providing potential bidders all the relevant documentation and details concerning the intended and issued Invitations To Tender (ITTs) for Open Competitions and Direct Negotiations is ESA-STAR - managed and operated by the ESA Procurement Department.

  • ROLLABLE AND DEPLOYABLE REFLECT-TRANSMIT ARRAY ANTENNAS (ARTES AT 5B.237)

    Objective: The objective is to develop, manufacture and test a breadboard of a lightweight, rollable, passive reflect-array or transmit-array deployed antenna. This shall operate at L- or Sband and have an aperture area of at least 5 square metre.Targeted Improvements: Enabling technology for large aperture deployable antennas based on a simple, reliable and robust mechanical deployment scheme, not existing today in ESA member states.Descripti…

  • IN-ORBIT DEMONSTRATION OF A NARROW BAND INTERNET OF THINGS (NB-IOT) INTER-SATELLITE DATA RELAY (ARTES 4.0 SPL 5G/6G 3E.023)

    The objective of this activity is to proof that a standardised existing solution such as NB-IOT can be used for satellite-to-satellite low data rate communications. Targeted Improvements: Introduce world's first standardised intersatellite data relay solution based on 3GPP NTN standards, opening up a new market for new companies and telecom operators toprovide data solutions to Earth Observation missions via intersatellite data relay. Des…

  • ASSESSMENT OF 5G NON-TERRESTRIAL NETWORKS (NTN) WITH SUB-6GHZ TIME DIVISION DUPLEXING (TDD) COMMUNICATIONS (ARTES 4.0 SPL 5G/6G 3F.017)

    The objective is to carry out an assessment of the NTN deployment of the 5G NR air interface in TDD mode and identification of technology gaps and constraints. Develop a software testbed implementing and testing the scenario.Improve the overall spectrum utilisation by up to 50% when using Time Division Duplex communication as per 3GPP standard.The 3GPP has specified for Non-Terrestrial Networks (NTN) the n255 and n256 bands, both operating in…

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT: SPACE QUALIFIED FAINT PULSE LASER SOURCE FOR QUANTUM KEY DISTRIBUTION (5G.003/SL.012)(ON DELEGATION REQUEST)

    Objective:The objective of the activity is to develop and qualify a faint pulse laser source for space-based quantum key distribution systems.Targeted Improvements:Increase the technical readiness level of faint pulse laser sources suitable for quantum key distribution applications from 5 to 7. Description:Quantum key distribution systems using protocols based on faint laser pulses require a photon source emitting less than one photon per puls…

  • FREQUENCY COORDINATION DEMONSTRATOR FOR NON-GEOSTATIONARY SATELLITE SYSTEMS (ARTES AT 3A.153) (RE-ISSUE OF ITT 1-11179)

    The objective of the activity is to develop and test a demonstrator of a frequency coordination system that manages access to spectrum among different non-geostationary satellite systems. The concept will be implemented and tested as a real-time emulator to be developed as part of the activity.Targeted improvements: Improving the achievable throughput by 50% with respect to partitioning the frequency band.Description:The increasing number of c…

  • MULTICAST OPTICAL HEAD UNIT (ARTES 4.0 SL SPL 5G.037)

    Objective:The objective of the activity is to develop a space-based point to multipoint optical terminal.Targeted Improvements:The MOHU would reduce the number of required Optical Head Units by a factor greater than 2. The MOHU should target a mass and sizeless than x1.5 the mass and size of the combined individual Optical Head Units.Description:Today the implementation of simultaneous optical space to ground links (Optical Feeder Links) requi…

  • CYBERSECURITY AUDITING SUITCASE FOR SATELLITE COMMUNICATION NETWORKS ( ARTES 4.0 SPL 4S 3D.024)

    The objective of the activity is to design, develop and test in a representative environment a portable auditing tool prototype to assess VSAT networks security from the wireless interface.

  • IN-ORBIT EXPERIMENT OF HIGH-PERFORMANCE DATA TRANSPORT, SWITCHING AND PROCESSING TECHNOLOGIES FOR TELECOM APPLICATIONS IN LOW EARTH ORBIT (ARTES AT 3E.017) (ON DELEGATION REQUEST)

    The objective of this activity is to design, develop and perform an in-orbit experiment of high-performance data transport, switching and processing technologies consisting of several key building blocks like processors, mass memory, switches and optical interconnects, allowing a data throughput of up to 10 Terabit per second to enable future high performance telecommunication applications. Targeted Improvements: Improvement by a factor of two…

  • POWER EFFICIENT USER PLANE FUNCTIONS FOR B5G SMALL SATELLITE PLATFORMS (ARTES 4.0 SPL 5G/6G 3F.016)

    Objective:The objective of this activity is to develop and test a power efficient 5G User Plane Function (UPF) prototype, implemented onto space enabled hardware platforms. The development will leverage concrete laboratory results of various RAN splits and compensate for their impact on the 5G protocol stack. Finally, system integration with a ground segment control plane will be tested, over emulated LEO constellationsTargeted Improvements:-…

  • BEAM FORMING CHIP FOR DIRECT RADIATING ARRAY ANTENNAS FOR W-BAND FEEDER LINKS (ARTES AT 5C.457) (ON DELEGATION REQUEST)

    The objective of this activity is to design, manufacture and test an engineering model of a beam forming network chip to support direct radiating array antennas in W-band for future receive chain feeder links in ultra-high throughput satellite telecommunication payloads.Targeted Improvements: Enabling technology for reconfigurable antennas in W-band for ultra-high-throughput satellite feederlinks (at least 1 Tbit/s throughput) not existing tod…

  • AGILE ULTRA HIGH FREQUENCY (UHF) TO KU-BAND TRANSCEIVER FOR COMMUNICATIONS IN CRISIS SITUATIONS (ARTES 4.0 SPL 4S 7C.092)

    The objective of this activity is to design and develop a UHF/Ku transceiver prototype for communications used by governmental users (i.e.+ first responders) and Non-Governmental Organisations (NGOs) within an area of crisis+ compatible with all Ku-band service providers.

  • SOLAR ARRAY TO POWER DIRECTLY AN ELECTRICAL PROPULSION SYSTEM (ARTES AT 4F.163) (ON DELEGATION REQUEST)

    The objective of the activity is to develop and test coupons to pave the way for high-power, high-voltage solar arrays (e.g., 300 Vplus) feeding directly electric propulsion systems. Targeted Improvements:- Increased solar array output voltage from 100V to at least 300V for high power solar arrays.- Enabling direct feed of solar array power to electrical propulsion systems. Description: Inorder to feed power generated by solar arrays directly…

  • ARTIFICIAL INTELLIGENCE-BASED SYSTEM FOR AUTONOMOUS ON-BOARD FAILURE ISOLATION, RECOVERY, AND RESOURCE OPTIMISATION FOR TELECOMMUNICATION CONSTELLATIONS (ARTES AT 4A.099) (ON DELEGATION REQUEST)

    The objective of the activity is to design, develop and validate an on-board software relying on Artificial Intelligence that autonomously detect, isolate and recover failures at spacecraft level and that performs resource optimisation at constellation level to recover and improve the overall availability of the service.Targeted Improvements: - Enabling autonomous FDIR management at the level of constellations.- Enabling autonomous performance…

  • FAST LOCKING FLANGE FOR WAVEGUIDE CONNECTIONS (ARTES AT 6B.094) (ON DELEGATION REQUEST)

    The objective of this activity is to design, develop and test a device that will enable fast (almost instantaneous) connection of two waveguides eliminating need for laborious removal and reinstallation of numerous nuts and bolts from the waveguide flanges. The connection achieved with this assembly shall demonstrate high reliability both in mechanical and electrical aspects and minimise the risk of assembly error. Targeted Improvements:- 95%…

  • DIRECT CHIP COOLING WITH PULSATING HEAT PIPES (PHPS) (ARTES AT 4D.086)

    The objective is to develop and test a direct chip to baseplate thermal concept based on Pulsating Heat Pipes that reduces design complexity and yet widens the operating temperature range and thermal transport performance.Targeted Improvements: - Improved heattransfer performance to at least 60 watts per chip.- Operation in adverse vertical gravity and below -40C- Reduced manufacturing complexity in chip to unit baseplate thermal transport com…

  • ARTES 4.0 TECHNOLOGY AND PRODUCT DEVELOPMENTS ACTIVITY - STANDARD CALL FOR PROPOSALS

    This Call for Proposals covers the industry initiated activities for the four Programmes lines identified below:ARTES Core Competitiveness Generic ProgrammeLine- Component B: Competitiveness GrowthARTES Strategic Programme Line Space for 5G/6G and Sustainable Connectivity ARTES Strategic Programme Line Space Systems for Safety and Security (4S) ARTES Strategic Programme Line Optical and Quantum Communication - ScyLight. The participating stat…

  • RESILIENT AND SECURE MULTIMEDIA COMMUNICATIONS FROM UNMANNED AERIAL/MARITIME VEHICLES USING MULTIPLE UNRELIABLE NETWORKS (ARTES 4.0 4S SPL 3A.172) (ON DELEGATION REQUEST)

    The objective of this activity is the design and demonstration of network protocols that can use multiple unreliable satellite and terrestrial networks for increased resilience and security for retrieval of multimedia data with multiple QoS classes from drones and unmanned maritime vessels. Targeted Improvements: This technique will allow at least 50% increase in the number of UAVs (Unmanned Aerial Vehicles) that can be supported in the same s…

  • COMPACT VHF-BAND DIPLEXER FOR SMALL SATELLITE VHF DATA EXCHANGE PAYLOADS (ARTES AT 5E.030)

    The objective of the activity is to design, manufacture and test a compact transmit-receive diplexer engineering model with high isolation, low loss and power handling as required for full duplex VHF data exchange payloads.Targeted Improvements: Enabling technology for full duplex VHF data exchange system (VDES) payloads on small satellite platforms.Description: The World Radiocommunication Conference in 2019 allocated maritime VHF frequencies…

  • HIGH EFFICIENCY SILICON-BASED AMPLIFIER FOR KA-BAND USER TERMINALS (ARTES AT 7B.067) (ON DELEGATION REQUEST)

    The objective of this activity is to design, manufacture and test Ka-band high efficiency amplifier monolithic microwave integratedcircuit (MMIC) based on silicon technology for user terminals. Targeted Improvements:- Amplifier power added efficiency above 30% with a noise power ratio of 15 dB minimum- Key building block for future highly integrated Ka-band user terminal active antennas. Description:The satcom market requires highly integrated…

  • CYBERSECURITY MAKERSPACE: IDENTIFICATION, EXPLORATION AND ASSESSMENT OF CYBERSECURITY CHALLENGES TO SATCOM SYSTEMS  (ARTES 4.0 SPL 4S 3D.025)

    The objective of this activity is to enable rapid delivery of small proof-of-concepts and technical investigations that are addressing emerging cybersecurity challenges in the field of cybersecurity for satcom systems.Procurement Policy: C(2) = A relevant participation (in terms of quality and quantity) of non-primes (incl. SMEs) is required. For additional information please go to:…

  • BUFFERBLOAT FREE AND CONGESTION RESILIENT SATCOM NETWORKS (ARTES AT 6B.129)

    The objective of this activity is to design, implement and test active queuing management and packet scheduling techniques at the user terminals and ground equipment, so that the SATCOM network continues to provide seamlessly an acceptable throughput and latency to users under any congestion situation.Targeted Improvements:- Enabling a responsive and fair SATCOM network in any traffic andresources availability situation.- Keeping the addition…

  • MASS PRODUCTION THRUSTER TESTING TECHNOLOGY (ARTES AT 4B.175) (ON DELEGATION REQUEST)

    The objective of the activity is to develop a concept for efficient testing of thrusters for large constellations that reduces the test-setup complexity and test duration by an order of magnitude. The concept shall be implemented and experimentally validated in ascalable testbed for high volume testing of the electric propulsion systems. Targeted Improvements: Increase the number of electricthrusters (minimum of 4 to 8) to be tested simultaneo…

  • LOW COMPLEXITY SOLAR CELLS FOR HIGH VOLUME PRODUCTION (ARTES AT 4F.170)

    The objective of this activity is to develop, manufacture and test new solar cells with new structures, new processes that will increase the throughput.Targeted Improvements: Doubling the production throughput by the introduction of innovative processes with anew solar cell designDescription: Currently the demand of highly efficient solar cells is exceeding the supply and requires to bemuch more competitive. Simplified manufacturing processes…

  • PRECODING FOR LOW EARTH ORBIT SATELLITE SYSTEMS (ARTES AT 3C.027) (ON DELEGATION REQUEST) - EXPRO+

    The objective of the activity is to develop precoding techniques for the forward link of multi-beam LEO satellite systems operatingin full frequency reuse. The activity will target the conventional single-satellite precoding, as well as precoding across adjacentsatellites having beams with overlapping footprints. The developed techniques will be implemented and tested in a software simulator able to assess the performance at both link level an…

  • MULTIFREQUENCY TRANSMIT ACTIVE PHASED ARRAYS FOR GROUND TERMINALS CONNECTED WITH MULTI-ORBIT NON GEOSTATIONARY ORBIT SATELLITES (ARTES AT 7A.078)

    The objective of this activity is to design, develop and test enabling technologies for multi frequency transmit active antenna. This will include antenna radiating elements, beamforming techniques and active elements designed to cover Ku and Ka transmit frequency bands for ground terminals connected to non-geostationary multi-orbit satellites.Targeted Improvements: - Mass and size reduction by 30% by sharing components between frequency bands…