Funding

This page displays the ARTES Invitation To Tenders (ITTs) which are published on ESA-STAR. If you are looking for a specific element select from the list provided and click on the Apply button to start the search and display the results.

Funding of the individual Prime or subcontractors, for ARTES Core Competitiveness and ARTES Applications activities, is subject to authorisation of the required ARTES budget by the related National Delegations. Therefore, bidding teams are requested to inform their National Delegation(s) of their intention to participate in funded activities already before submitting a proposal.

The official information platform for providing potential bidders all the relevant documentation and details concerning the intended and issued Invitations To Tender (ITTs) for Open Competitions and Direct Negotiations is ESA-STAR - managed and operated by the ESA Procurement Department.

  • HIGH IMPULSE ARGON ELECTRIC THRUSTER (ARTES AT 4B.181)

    The objective of the activity is to design, manufacture and test an electric thruster using Argon propellant, compatible with the long lifetime and high total impulse requirements of telecommunication satellites in GEO and for constellations.Targeted Improvements:- Novel capability to operate with Argon propellant not existing today.- Improved lifetime and Total Impulse per kW(N.s/kW) by a factor of 2.- Decreased complexity of the thruster arc…

  • POWER EFFICIENT DESIGN OF RADIO FREQUENCY PAYLOAD ALGORITHMS ON SYSTEM ON CHIP (ARTES AT 5C.513)

    The objective of the activity is to identify and benchmark power efficient radio frequency algorithms on complex System on Chip (SoC) devices. Power efficient algorithms for at least two applications case (e.g. beamforming, decoding/encoding, neural networks...) will be designed, developed and tested and compared to programmable logic only implementation.Targeted Improvements: 50% reductionpower consumption for radio frequency algorithms with…

  • BROADBAND TUNEABLE KA-BAND FREQUENCY MULTIPLEXERS (ARTES AT 5C.430) (ON DELEGATION REQUEST)

    The objective of this activity is to design, manufacture and test two breadboards corresponding to a reconfigurable 4-channel 30 GHz low power Combiner Frequency Multiplexer (CMUX) and a 4-channel 20 GHz low power frequency Demultiplexer (DMUX). Targeted Improvements: Replacement of conventional fixed-bandwidth CMUX and DMUX equipment with a tuneable solution capable of supporting agile traffic management.Description: Current broadband satelli…

  • PRINTED CIRCUIT BOARD TECHNOLOGY FOR AUTOMOTIVE CONFORMAL ANTENNAS (ARTES 4.0 AT 7C.083)

    The objective of the activity is to investigate, develop and test conformal Printed Circuit Board (PCB) technology using a novel approach, such as additive manufacturing to "print" the antenna for the automotive market. Targeted Improvements: Enabling conformal board of patches with distribution feed and integration of amplifiers on the reverse side, able to follow the shape of a car roof. Description: Conventional PCB technology is…

  • ONBOARD DATA HANDLING SUB-SYSTEM FOR AUTONOMOUS SATELLITES (ARTES AT 4G.044)

    The objective is to develop an onboard data handling architecture capable of autonomously acquiring, processing and interpreting housekeeping and telemetry data and taking the required actions without ground intervention. The activity will develop a data handlingsub-system demonstrator to validate the intelligent functionalities, including prognostic and health management (PHM) capabilitiesTargeted Improvements: Enabling technology development…

  • 10W PER MM CLASS THERMALLY ENHANCED HIGH EFFICIENCY MICROWAVE POWER AMPLIFIERS (ARTES 4.0 AT 5C.491) (RE-ISSUE)

    The objective of this activity is to design, manufacture and test a breadboard of a high-power amplifier in Ku-band or above with 10 W/mm class of power density in continuous wave operation. The selected manufacturing process will allow a smaller chip size with reduced junction temperature, reduced thermal memory effects and improved efficiency.Targeted Improvements:- 3-5 times improvementin power density.- Junction temperature reduction of te…

  • SPACEBORNE W-BAND HIGH POWER TRAVELLING WAVE TUBE (ARTES AT 5C.486) (ON DELEGATION REQUEST)

    The objective of this activity is to design, develop and test a breadboard of high-power W-band travelling wave tube (TWT) to meet the requirements of Very High Throughput Satellites.Targeted Improvements:Enable a European source of W-band TWT with 5 GHz instantaneous bandwidth, 100 W power output and at least 30% efficiency.Description:High Throughput Satellites (HTS) and Very High Throughput Satellites (VHTS) already use Q/V band frequencies…

  • AUTOMOTIVE S-BAND ANTENNA FOR SATELLITE IOT AND 5G TERRESTRIAL COMMUNICATIONS (ARTES SPL 5G 7C.062) (UPON DELEGATION REQUEST)

    Upon Delegation Request (*) The objective of the activity is to develop, manufacture and test an integrated automotive S-band antenna that combines satellite IoT and 5G terrestrial communications. Targeted Improvements: Reduction of antenna form factor from a protruding antenna (e.g. shark fin shape) to planar antenna fully integrated in the car roof. Bandwidth increase from 30 to 90 MHz for satellite and 5G communications. Description: The In…

  • DIGITAL TWIN FOR ON-ORBIT ASSEMBLY AND MANUFACTURING OF VERY LARGE ANTENNAS (ARTES AT 5B.235)

    The objective of the activity is to develop and test a digital-twin for on-orbit assembly and manufacturing of antennas up to 30-50metres diameter. An end-to-end manufacturing process will be selected and guidance, navigation and control techniques for assembly and manufacturing on-orbit will be developed. A simple large reflector antenna will be designed, and assembly and manufacturing will be evaluated with the developed digital twin.Targete…

  • LUNAR LASER COMMUNICATION TERMINAL (ARTES 4.0 SL SPL 5G.045)

    Objective: The objective of the activity is to first design a Laser Communication Terminal (LCT) concept suitable for communicationover lunar distances. In a second step, the activity will develop an engineering model of a CCSDS compatible transceiver with critical functions including coding, synchronisation, and modulation. Targeted Improvements: Enabling a European or Canadian lunar communication terminal operating with a data rate one order…

  • ACCELEROMETER FOR DRAG COMPENSATION IN VERY LOW EARTH ORBIT (ARTES AT 4C.069) (ON DELEGATION REQUEST)

    The objective of the activity is to design, manufacture and test an accelerometer for drag compensation in Very Low Earth Orbit (VLEO). Targeted Improvements: - Enabling real time compensation of drag by the propulsion system. - Miniaturisation of instrument by a factor 10 compared to existing payload grade accelerometers. - Increase accuracy by factor 10 compared to existing accelerometers used for orbital control.Description: While intere…

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT: INTEGRATED OPTICAL INTERFACES FOR RF PHASED ARRAY ANTENNAS (5F.013 / SL.030)

    Objective:The objective of the activity is to analyse and demonstrate the benefits of replacing coaxial cables/waveguides with fibre optics in large RF phased array antennas. The activity shall identify the best technologies to be employed and it will design, manufacture and test 2 breadboard demonstrators covering both analogue and digital transmission.Targeted Improvements:Order of magnitude mass and volume reduction by substituting the pass…

  • 5G AUTOMOTIVE ANTENNA PROTOTYPE AND DEMONSTRATION (ARTES 4.0 SPL 5G/6G 7C.084)

    The objective is to design and demonstrate a new class of low-profile and conformal antennas, providing seamless connectivity for 5G services on vehicles.Targeted Improvements:Enabling technology Satellite antennas compatible with the constrains of the automotive markets (in terms of aesthetics, aerodynamics and safety), whilst providing seamless connectivity, are currently not available.Description:The automotive sector is a crucial target gr…

  • DISTINCT TRANSMIT AND RECEIVE SATELLITE SYSTEM FOR SIMULTANEOUS TWO-WAY LOW DATA RATE COMMUNICATION SERVICES (ARTES AT 3A.202)

    The objective of the activity is to design a system concept based on distinct transmit-only and receive-only satellites for the user link. The goal is to enable at the system level simultaneous two-way low data rate communication services such as Internet of Things, messaging, and VDES operating in frequency range from VHF to C-band. The system concept will be implemented and tested in an end-to-end system testbed. This includes the user termi…

  • ROLLABLE AND DEPLOYABLE REFLECT-TRANSMIT ARRAY ANTENNAS (ARTES AT 5B.237)

    Objective: The objective is to develop, manufacture and test a breadboard of a lightweight, rollable, passive reflect-array or transmit-array deployed antenna. This shall operate at L- or Sband and have an aperture area of at least 5 square metre.Targeted Improvements: Enabling technology for large aperture deployable antennas based on a simple, reliable and robust mechanical deployment scheme, not existing today in ESA member states.Descripti…

  • COMPACT TRIBOLOGY-FREE POINTING MECHANISM (ARTES AT 4E.094)

    The objective of the activity is to design, manufacture and test a tribology-free mechanism breadboard for both platform and payload pointing applications on telecom satellites. The lifetime of the developed mechanism shall be assessed, and endurance testing shall be carried out. Targeted Improvements: Enabling a European source of compact, tribology-free pointing mechanisms with no backlash or friction hysteresis effects. Description: Today p…

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT: RF AND OPTICAL HYBRID GATEWAY ANTENNA (6C.002/SL.024)(ON DELEGATION REQUEST) - EXPRO PLUS

    Objective:The objective of this activity is to investigate a telecom gateway antenna able to work simultaneously in both the RF (Ka- Q/V-Band) and optical wavelengths.Targeted Improvements:This product is currently not available and it would allow a phased migration from RF communications to optical communications.Description:There is a clear trend in the need to increase bandwidth in order to increase the data rate, within the telecommunicat…

  • END-TO-END DEMONSTRATION OF 5G NEW RADIO (NR) FOR FUTURE RAILWAY MOBILE COMMUNICATION SYSTEMS (ARTES 4.0 SPL 5G/6G 7C.086)

    The objective of this activity is to develop the necessary 5G New Radio (NR) ground segment prototypes for servicing the Future Railway Mobile Communication System (FRMCS) via satellite and demonstrate the capability with end-to-end in orbit testing.Targeted improvements:Ensure compliance to the FRMCS safety and performance requirements by demonstrating the feasibility of servicing via a satellite link, complementing the terrestrial network. P…

  • CHANNEL ESTIMATION AND ADAPTATION TECHNIQUES FOR Q/V BAND FEEDER LINKS OF LEO/MEO CONSTELLATION (ARTES AT 3B.048)

    The objective of this activity is to design, develop and test channel estimation and adaptation techniques as needed for Q/V band feeder links of LEO/MEO constellation with regenerative on-board processors. An end-to-end system testbed will be developed that includes varying channel, antenna and hardware impairments in the downlink and uplink depending on the elevation angle. The testbed will include the baseband, analogue and RF domain to tes…

  • PIONEER PARTNERSHIP PROJECTS (PIONEER 4.0) - OPEN CALL FOR PROPOSAL

    The Pioneer programme, implemented under the ARTES 4.0 Generic Programme Line "Partnership Projects", aims to supports the emergence of Space Mission Providers (SMPs), i.e. commercial entities interested in becoming one-stop-shop service providers for public and private customers. The Open Call for proposals is aimed to offer the opportunity for new companies from across all ESA member statesto participate in the programme. It will b…

  • CYBERSECURITY AUDITING SUITCASE FOR SATELLITE COMMUNICATION NETWORKS ( ARTES 4.0 SPL 4S 3D.024)

    The objective of the activity is to design, develop and test in a representative environment a portable auditing tool prototype to assess VSAT networks security from the wireless interface.

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT : DEMONSTRATION OF RELIABLE HIGH DATA RATE OPTICAL LINKS UNDER STRONG ATMOSPHERIC TURBULENCE CONDITIONS (3B.042 / SL.015)

    Objective:The objective of this activity is to demonstrate reliable high data rate optical transmission through the atmosphere (>100Gbps) in a scenario representative (in terms of link attenuation and optical turbulence) of an optical link between a telecom satellite and an Optical Ground Station for elevation angles down to 5deg. Targeted Improvements:Improve the service quality and availability of high data rate optical links through the…

  • W-BAND HIGH POWER AMPLIFIER FOR THE GROUND SEGMENT (ARTES AT 6B.120) (ON DELEGATION REQUEST)

    Objective: The objective of the activity is to design, manufacture and test a W-band HPA for the ground segment. Targeted Improvements: Enabling W-band feeder uplink communications. Description: The use of W-band (71-76 GHz for downlink and 81-86 for uplink GHz) is expected to significantly increase the available bandwidth for Very High Throughput Satellite Systems (VHTS). W-band spectrum is also expected to reduce the number of gateways requi…

  • FACETED RECONFIGURABLE REFLECTOR BASED ON REFLECT ARRAY TECHNOLOGY (ARTES AT 5B.242)

    The objective of this activity to design, manufacture and test a Ku- or Ka-band faceted reconfigurable reflect array operating in receive band for reconfigurable coverage applications. RF and thermo-elastic performance shall be experimentally evaluated.TargetedImprovements: - Reduction up to 20% the reflector aperture diameter in comparison to today's shape reflector technology.- Improvement of the directivity performance at the edge of t…

  • 5G NEW RADIO (NR) NON-TERRESTRIAL NETWORKS RELEASE 18 PROTOCOL STACK ENHANCEMENTS (ARTES 4.0 SPL 5G/6G 3F.011)

    The objective of this activity is to develop the software protocol stack for Release 18 enhancements related to 5G New for Radio (NR) for Non-Terrestrial Networks. The software protocol stack development shall be based on a testbed considering both the User Equipment (UE) and g-NodeB (gNB) features and operational procedures.Targeted Improvements:Enable 5G NR NTN system performance simulations with the latest Release 18 modifications.Descripti…