Funding

This page displays the ARTES Invitation To Tenders (ITTs) which are published on ESA-STAR. If you are looking for a specific element select from the list provided and click on the Apply button to start the search and display the results.

Funding of the individual Prime or subcontractors, for ARTES Core Competitiveness and ARTES Applications activities, is subject to authorisation of the required ARTES budget by the related National Delegations. Therefore, bidding teams are requested to inform their National Delegation(s) of their intention to participate in funded activities already before submitting a proposal.

The official information platform for providing potential bidders all the relevant documentation and details concerning the intended and issued Invitations To Tender (ITTs) for Open Competitions and Direct Negotiations is ESA-STAR - managed and operated by the ESA Procurement Department.

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT: RF AND OPTICAL HYBRID GATEWAY ANTENNA (6C.002/SL.024)(ON DELEGATION REQUEST) - EXPRO PLUS

    Objective:The objective of this activity is to investigate a telecom gateway antenna able to work simultaneously in both the RF (Ka- Q/V-Band) and optical wavelengths.Targeted Improvements:This product is currently not available and it would allow a phased migration from RF communications to optical communications.Description:There is a clear trend in the need to increase bandwidth in order to increase the data rate, within the telecommunicat…

  • 5G NON-TERRESTRIAL NETWORK SECURE TWO-WAY RANGING FOR LEO SATELLITES (ARTES 4.0 SPL 5G/6G 3F.022)

    Study, design and validate a secure two-way ranging protocol relying on 5G Non-Terrestrial Network (NTN) in LEO.Targeted Improvements:Enable secure two-way ranging via future LEO 5G satcom services for target applications such as IoT sensors.Description:All GNSS systems are principally based on one-way ranging and as such they are fundamentally vulnerable to spoofing and/or meaconing attacks, even in the presence of GNSS security mechanisms su…

  • ASSESSMENT OF 5G NON-TERRESTRIAL NETWORKS (NTN) WITH SUB-6GHZ TIME DIVISION DUPLEXING (TDD) COMMUNICATIONS (ARTES 4.0 SPL 5G/6G 3F.017)

    The objective is to carry out an assessment of the NTN deployment of the 5G NR air interface in TDD mode and identification of technology gaps and constraints. Develop a software testbed implementing and testing the scenario.Improve the overall spectrum utilisation by up to 50% when using Time Division Duplex communication as per 3GPP standard.The 3GPP has specified for Non-Terrestrial Networks (NTN) the n255 and n256 bands, both operating in…

  • CYBERSECURITY AUDITING SUITCASE FOR SATELLITE COMMUNICATION NETWORKS ( ARTES 4.0 SPL 4S 3D.024)

    The objective of the activity is to design, develop and test in a representative environment a portable auditing tool prototype to assess VSAT networks security from the wireless interface.

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT : DEMONSTRATION OF RELIABLE HIGH DATA RATE OPTICAL LINKS UNDER STRONG ATMOSPHERIC TURBULENCE CONDITIONS (3B.042 / SL.015)

    Objective:The objective of this activity is to demonstrate reliable high data rate optical transmission through the atmosphere (>100Gbps) in a scenario representative (in terms of link attenuation and optical turbulence) of an optical link between a telecom satellite and an Optical Ground Station for elevation angles down to 5deg. Targeted Improvements:Improve the service quality and availability of high data rate optical links through the…

  • FREQUENCY COORDINATION DEMONSTRATOR FOR NON-GEOSTATIONARY SATELLITE SYSTEMS (ARTES AT 3A.153) (RE-ISSUE OF ITT 1-11179)

    The objective of the activity is to develop and test a demonstrator of a frequency coordination system that manages access to spectrum among different non-geostationary satellite systems. The concept will be implemented and tested as a real-time emulator to be developed as part of the activity.Targeted improvements: Improving the achievable throughput by 50% with respect to partitioning the frequency band.Description:The increasing number of c…

  • KA-BAND RADIO FREQUENCY FRONT-END RESISTANT TO INTENTIONAL INTERFERENCE FOR SECURE TTC (ARTES 4.0 4S SPL 4G.041)

    The objective of the activity is to design, manufacture and test a Scaled Engineering Model of rugged Ka-band RF front-end for secure TTC applications that will enable technologies for mitigation of intentional interference. Targeted Improvements: Ability to operate under severe Radio Frequency Interference. Description: TTC is a key equipment for all satellites since it provides the umbilical cord to the control station(s). It has to operate…

  • ATMOSPHERIC TURBULENCE EFFECT MITIGATION BY SECONDARY MIRROR ACTUATION (ARTES 4.0 SL SPL 6C.020)

    Objective: The objective of this activity is to simplify optical feeder links systems in Optical Ground Stations by replacing the secondary mirror with an active (deformable) one and to demonstrate the improvement in transmission budget and complexity. Targeted Improvements: 30% increased optical throughput in optical communication ground stations. 20% reduction of complexity in adaptive optics and beam pre-distortion in feeder-link systems. R…

  • AGILE ULTRA HIGH FREQUENCY (UHF) TO KU-BAND TRANSCEIVER FOR COMMUNICATIONS IN CRISIS SITUATIONS (ARTES 4.0 SPL 4S 7C.092)

    The objective of this activity is to design and develop a UHF/Ku transceiver prototype for communications used by governmental users (i.e.+ first responders) and Non-Governmental Organisations (NGOs) within an area of crisis+ compatible with all Ku-band service providers.

  • POWER EFFICIENT USER PLANE FUNCTIONS FOR B5G SMALL SATELLITE PLATFORMS (ARTES 4.0 SPL 5G/6G 3F.016)

    Objective:The objective of this activity is to develop and test a power efficient 5G User Plane Function (UPF) prototype, implemented onto space enabled hardware platforms. The development will leverage concrete laboratory results of various RAN splits and compensate for their impact on the 5G protocol stack. Finally, system integration with a ground segment control plane will be tested, over emulated LEO constellationsTargeted Improvements:-…

  • MASS MEMORY UNIT WITH 100 GIGABIT PER SECOND WRITE RATE CLASS FOR LOW EARTH ORBIT COMMUNICATION APPLICATIONS (ARTES AT 5C.498) (ON DELEGATION REQUEST)

    The objective of this activity is to design, manufacture and test a memory unit breadboard offering interface port and memory read and write speeds at 100 GigaBit per second and a capacity of at least 3 TeraBits for interconnected constellation telecommunication systems. Targeted Improvements: Improvement of the write speed by a factor of 10 compared to FLASH-based mass memories. Description:Future Low Earth Orbit (LEO) constellations with hig…

  • DIRECT CHIP COOLING WITH PULSATING HEAT PIPES (PHPS) (ARTES AT 4D.086)

    The objective is to develop and test a direct chip to baseplate thermal concept based on Pulsating Heat Pipes that reduces design complexity and yet widens the operating temperature range and thermal transport performance.Targeted Improvements: - Improved heattransfer performance to at least 60 watts per chip.- Operation in adverse vertical gravity and below -40C- Reduced manufacturing complexity in chip to unit baseplate thermal transport com…

  • DRAG AND ATOMIC OXYGEN RESISTANT CARBON FIBRE REINFORCED POLYMER FOR VERY LOW EARTH ORBIT TELECOM SATELLITES (ARTES AT 4A.092) (ON DELEGATION REQUEST)

    The objective of the activity is to develop and test a coating material (e.g. for substrates such as carbon fibre reinforced polymer, polymers, etc) with improved atomic oxygen and drag resistance to be used on the external satellite surfaces for very low Earth orbit applicationsTargeted Improvements:- Enabling technology not existing today; allowing telecommunication satellites with conventional construction materials in much lower orbits tha…

  • ARTES 4.0 TECHNOLOGY AND PRODUCT DEVELOPMENTS ACTIVITY - STANDARD CALL FOR PROPOSALS

    This Call for Proposals covers the industry initiated activities for the four Programmes lines identified below:ARTES Core Competitiveness Generic ProgrammeLine- Component B: Competitiveness GrowthARTES Strategic Programme Line Space for 5G/6G and Sustainable Connectivity ARTES Strategic Programme Line Space Systems for Safety and Security (4S) ARTES Strategic Programme Line Optical and Quantum Communication - ScyLight. The participating stat…

  • ARTIFICIAL INTELLIGENCE-BASED SYSTEM FOR AUTONOMOUS ON-BOARD FAILURE ISOLATION, RECOVERY, AND RESOURCE OPTIMISATION FOR TELECOMMUNICATION CONSTELLATIONS (ARTES AT 4A.099) (ON DELEGATION REQUEST)

    The objective of the activity is to design, develop and validate an on-board software relying on Artificial Intelligence that autonomously detect, isolate and recover failures at spacecraft level and that performs resource optimisation at constellation level to recover and improve the overall availability of the service.Targeted Improvements: - Enabling autonomous FDIR management at the level of constellations.- Enabling autonomous performance…

  • SOLAR ARRAY WITH LATCHED SHALLOW CURVED SURFACE FOR IMPROVED DEPLOYED STIFFNESS (ARTES AT 4F.161) (ON DELEGATION REQUEST)

    The objective of the activity is to develop, manufacture and test a latch to enhance the deployed stiffness of an existing array, by means of a slight repositioning of panels. Targeted Improvements: Increase the frequencies of the deployed array by 30%.Description: Most telecommunication solar arrays comprise in-line panels, arranged in a row. Some include lateral panels, forming a cross configuration. In the case of the latter, the frequency…

  • BUFFERBLOAT FREE AND CONGESTION RESILIENT SATCOM NETWORKS (ARTES AT 6B.129)

    The objective of this activity is to design, implement and test active queuing management and packet scheduling techniques at the user terminals and ground equipment, so that the SATCOM network continues to provide seamlessly an acceptable throughput and latency to users under any congestion situation.Targeted Improvements:- Enabling a responsive and fair SATCOM network in any traffic andresources availability situation.- Keeping the addition…

  • L-BAND GALLIUM NITRIDE LOW NOISE AMPLIFIER-BASED RF FRONT-END (ARTES AT 5C.465) (ON DELEGATION REQUEST)

    The objective of the activity is to design a compact L-band RF front-end for telecom applications which is based on a GaN Low NoiseAmplifier (LNA). A breadboard of a GaN microwave monolithic integrated circuit will be developed and tested. The RF front-end including the filtering function shall be modelled.Targeted Improvements: up to 30% mass and volume saving of the RF front-end (LNA and filtering) and 20 dB improvement of the LNA dynamic ra…

  • CYBERSECURITY MAKERSPACE: IDENTIFICATION, EXPLORATION AND ASSESSMENT OF CYBERSECURITY CHALLENGES TO SATCOM SYSTEMS  (ARTES 4.0 SPL 4S 3D.025)

    The objective of this activity is to enable rapid delivery of small proof-of-concepts and technical investigations that are addressing emerging cybersecurity challenges in the field of cybersecurity for satcom systems.Procurement Policy: C(2) = A relevant participation (in terms of quality and quantity) of non-primes (incl. SMEs) is required. For additional information please go to:…

  • COMPACT VHF-BAND DIPLEXER FOR SMALL SATELLITE VHF DATA EXCHANGE PAYLOADS (ARTES AT 5E.030)

    The objective of the activity is to design, manufacture and test a compact transmit-receive diplexer engineering model with high isolation, low loss and power handling as required for full duplex VHF data exchange payloads.Targeted Improvements: Enabling technology for full duplex VHF data exchange system (VDES) payloads on small satellite platforms.Description: The World Radiocommunication Conference in 2019 allocated maritime VHF frequencies…

  • BREADBOARDING OF CRITICAL TECHNOLOGIES FOR A MULTI-BEAM SATELLITE RECEIVER FOR AIRCRAFT MODE-S SIGNALS (ARTES 4.0 4S SPL 5A.082) (ON DELEGATION REQUEST)

    The objective of the activity is to design, develop and test payload technologies compliant with multi-beam receivers for satellite-based air traffic surveillance. Critical breadboarding will be carried out to demonstrate the concept suitable for use on small satellites in LEO or MEO. Targeted Improvements: 50% reduced payload power consumption, mass and volume compared to current technology.Increase the probability of message detection by a f…

  • MULTIFREQUENCY TRANSMIT ACTIVE PHASED ARRAYS FOR GROUND TERMINALS CONNECTED WITH MULTI-ORBIT NON GEOSTATIONARY ORBIT SATELLITES (ARTES AT 7A.078)

    The objective of this activity is to design, develop and test enabling technologies for multi frequency transmit active antenna. This will include antenna radiating elements, beamforming techniques and active elements designed to cover Ku and Ka transmit frequency bands for ground terminals connected to non-geostationary multi-orbit satellites.Targeted Improvements: - Mass and size reduction by 30% by sharing components between frequency bands…

  • BACKGROUND LIGHT AND ATMOSPHERE METROLOGY FOR QUANTUM KEY DISTRIBUTION AT URBAN LOCATIONS (4S SAGA)

    Development of tools and hardware and the execution of a measurement campaign for background light and atmosphere conditions for Quantum Key Distribution (QKD) at urban location (major cities and metropolitan areas) under ARTES 4.0 Space Systems for Safety and Security (4S) Strategic Programme Line. These measurement results are an important check point to validate the design of the SAGA system. The background light and atmosphere metrology ac…

  • PREDICTIVE QUALITY OF SERVICE (QOS) PROTOCOL FOR NON-TERRESTRIAL NETWORKS IN SUPPORT OF AUTOMOTIVE SERVICES (ARTES 4.0 SPL 5G/6G 3F.023)

    Objective:This objective of this activity is to develop and test an extended protocol to address the support of predictive Qualityof Service (QoS) in Non-Terrestrial Networks (NTNs). The activity will also undertake the necessary investigation and selection of data-driven algorithms to automate predictive QoS in NTN.Targeted Improvements:Features enhancement to align NTN solutions in an integrated NTN/TN ecosystem in support to automotive serv…

  • LOW COMPLEXITY SOLAR CELLS FOR HIGH VOLUME PRODUCTION (ARTES AT 4F.170)

    The objective of this activity is to develop, manufacture and test new solar cells with new structures, new processes that will increase the throughput.Targeted Improvements: Doubling the production throughput by the introduction of innovative processes with anew solar cell designDescription: Currently the demand of highly efficient solar cells is exceeding the supply and requires to bemuch more competitive. Simplified manufacturing processes…