Funding

This page displays the ARTES Invitation To Tenders (ITTs) which are published on ESA-STAR. If you are looking for a specific element select from the list provided and click on the Apply button to start the search and display the results.

Funding of the individual Prime or subcontractors, for ARTES Core Competitiveness and ARTES Applications activities, is subject to authorisation of the required ARTES budget by the related National Delegations. Therefore, bidding teams are requested to inform their National Delegation(s) of their intention to participate in funded activities already before submitting a proposal.

The official information platform for providing potential bidders all the relevant documentation and details concerning the intended and issued Invitations To Tender (ITTs) for Open Competitions and Direct Negotiations is ESA-STAR - managed and operated by the ESA Procurement Department.

  • QUANTUM RESISTANT KEY EXCHANGE AND AUTHENTICATION MECHANISM FOR 5G NON-TERRESTRIAL NETWORKS (ARTES 4.0 SPL 4S 3D.026)

    The objective of this activity is to identify, analyse and test post quantum cryptographic solutions that are suitable for 5G Non-Terrestrial Network (NTN) key exchange and authentication. The activity will develop a testbed to implement and test identified post quantum cryptographic solutions.

  • WDM HIGH-POWER OPTICAL AMPLIFIER AT 1064NM (ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT 5F.020)

    Objective: The objective is to develop a high-power and high-efficient optical booster amplifier, compatible with WDM operation at 1064nm wavelength range. Two versions, with different output optical power and wall-plug efficiency requirements, are to be developed to address operation under space and ground environmental conditions. Targeted Improvements:Strategic component not available inESA's Member States nor in Cooperating/Associated…

  • MULTIFUNCTIONAL HINGE FOR LARGE ON-BOARD DIRECT SATELLITE-TO-DEVICE ACTIVE ANTENNA ARRAYS (ARTES 4.0 SPL 5G/6G 4E.093)

    The objective of the activity is to develop and test a multifunctional hinge technology to accommodate a large multi panel active antenna array on a spacecraft platform, with integrated sensing to avoid adverse local deflections due to spacecraft dynamics.Targeted Improvements:Enabling technology for very large active antennas with disperse panels to be accommodated on a spacecraft platformfor future 5G/6G (direct to handheld) satellitesDescri…

  • MULTICAST OPTICAL HEAD UNIT (ARTES 4.0 SL SPL 5G.037)

    Objective:The objective of the activity is to develop a space-based point to multipoint optical terminal.Targeted Improvements:The MOHU would reduce the number of required Optical Head Units by a factor greater than 2. The MOHU should target a mass and sizeless than x1.5 the mass and size of the combined individual Optical Head Units.Description:Today the implementation of simultaneous optical space to ground links (Optical Feeder Links) requi…

  • VERY LOW EARTH ORBIT SYSTEM SIMULATOR FOR DIRECT SATELLITE-TO-DEVICE 5G/6G COMMUNICATIONS (ARTES 4.0 SPL 5G/6G 3F.019)

    Objective: The objective of the activity is to develop and test a system simulator testbed capable of modelling and assessing the performance of communication satellite constellations operating in Very Low Earth Orbit (VLEO). This includes the assessment of the emerging waveforms (5G NTN, European Protected Waveform).Targeted Improvements: Enable the design and assess the constellation system performance of communication satellites operating i…

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT: SPACE QUALIFIED FAINT PULSE LASER SOURCE FOR QUANTUM KEY DISTRIBUTION (5G.003/SL.012)(ON DELEGATION REQUEST)

    Objective:The objective of the activity is to develop and qualify a faint pulse laser source for space-based quantum key distribution systems.Targeted Improvements:Increase the technical readiness level of faint pulse laser sources suitable for quantum key distribution applications from 5 to 7. Description:Quantum key distribution systems using protocols based on faint laser pulses require a photon source emitting less than one photon per puls…

  • SINGLE-PIECE-PART W-BAND PHASED ARRAY ANTENNA INCLUDING THE PASSIVE RF FRONT-END (ARTES AT 5B.239)

    The objective of this activity is to design, manufacture and test a W-band/E-band phased array antenna including the passive RF front-end taking advantage of additive and hybrid manufacturing techniques in order to reduce its complexity and mass compared to conventional subtractive techniquesTargeted Improvements: 30% mass reduction, removing screws and assembly interfaces.Description: With the multiplication of broadband communication satelli…

  • IN-ORBIT EXPERIMENT OF HIGH-PERFORMANCE DATA TRANSPORT, SWITCHING AND PROCESSING TECHNOLOGIES FOR TELECOM APPLICATIONS IN LOW EARTH ORBIT (ARTES AT 3E.017) (ON DELEGATION REQUEST)

    The objective of this activity is to design, develop and perform an in-orbit experiment of high-performance data transport, switching and processing technologies consisting of several key building blocks like processors, mass memory, switches and optical interconnects, allowing a data throughput of up to 10 Terabit per second to enable future high performance telecommunication applications. Targeted Improvements: Improvement by a factor of two…

  • ON-CHIP ACTIVE RECONFIGURABLE FILTERS FOR 5G PHASED ARRAY ANTENNAS (ARTES 4.0 SPL 5G/6G 7A.076)

    The objective is to develop and test a Ku or Ka band transparent phased array antenna to provide broadband connectivity on board cars. Targeted Improvements: Develop a new class of phased array antennas for cars able to guarantee a seamless broadband connectivitywith LEO satellites. Description: There is today a significant interest to provide broadband connectivity to cars. This request is associated to the need to guarantee emergency service…

  • BEAM FORMING CHIP FOR DIRECT RADIATING ARRAY ANTENNAS FOR W-BAND FEEDER LINKS (ARTES AT 5C.457) (ON DELEGATION REQUEST)

    The objective of this activity is to design, manufacture and test an engineering model of a beam forming network chip to support direct radiating array antennas in W-band for future receive chain feeder links in ultra-high throughput satellite telecommunication payloads.Targeted Improvements: Enabling technology for reconfigurable antennas in W-band for ultra-high-throughput satellite feederlinks (at least 1 Tbit/s throughput) not existing tod…

  • IMPLEMENTATION OF SOFTWARE MITIGATION SOLUTIONS FOR RADIATION-INDUCED SINGLE EVENT EFFECTS (ARTES 4.0 AT 5C.490) - RE-ISSUE OF ITT 1-11734

    The objective of the activity is to de-risk software mitigation techniques for radiation effects on a family of high-performance processors embedded in System on Chip (SoC) components. The activity will identify, on one or more processors of interest for the industry, radiation-induced failure modes and will implement appropriate software mitigation techniques with reuse or development of small FPGA IPs if needed. Targeted Improvements: Enable…

  • SECURE SATCOM MODULE IN SUPPORT OF GLOBAL NAVIGATION SATELLITE SYSTEM SERVICE DELIVERY AND ROBUSTNESS (ARTES 4.0 SPL 4S 3A.196) (ON DELEGATION REQUEST)

    The objective of the activity is to design+ develop and manufacture a ground-based breadboard module allowing existing and auxiliary data from/linked to GNSS services to be securely delivered to their users via satellite communications using a secure protocol.

  • SPIN-IN OF SLIPRING TECHNOLOGY FOR SATCOM APPLICATIONS (ARTES AT 4E.096)

    The objective of the activity is to select an off the shelf European slipring technology for terrestrial applications and demonstrate its suitability for Satcom applicationTargeted Improvements: Improving by 20% of power density, lifetime, mass, volume, and lead time.Description: Solar Array Drive Mechanism (SADM) require complex slip-ring technology often leading to long delivery times. However, slipring technologies for terrestrial applicati…

  • ELECTROMECHANICAL MULTILINE THRUSTER SWITCHING UNIT FOR ELECTRIC PROPULSION (ARTES AT 4F.171)

    The objective of the activity is to design, manufacture and test a thruster switching unit facilitating the connection of multiple electric propulsion thrusters to one or more power processing units for redundancy or configuration purposes optimising the system architecture.Targeted Improvements: - Improved efficiency (10% increase with respect to solid state solution).- Increased reliability with respect to a relay-based solution.- Reduced le…

  • FAST LOCKING FLANGE FOR WAVEGUIDE CONNECTIONS (ARTES AT 6B.094) (ON DELEGATION REQUEST)

    The objective of this activity is to design, develop and test a device that will enable fast (almost instantaneous) connection of two waveguides eliminating need for laborious removal and reinstallation of numerous nuts and bolts from the waveguide flanges. The connection achieved with this assembly shall demonstrate high reliability both in mechanical and electrical aspects and minimise the risk of assembly error. Targeted Improvements:- 95%…

  • HIGH POWER AMPLIFIER FOR THE OPTICAL L-BAND (1565 - 1625 NM) (ARTES 4.0 SL SPL 5G.043)

    The objective of the activity is to develop an elegant breadboard of a high-power optical amplifier operating in L-band.TargetedImprovements:Enable access to spectrum in the optical transmission window(s) beyond the conventional C-band.Description:To date amplifiers in the optical L-band generate relatively low output power, which reduces their usefulness for high bandwidth data transmission. The activity will develop technologies to enhance t…

  • PROTECTION OF SATELLITE COMMUNICATIONS GROUND SEGMENT FROM INTERFERENCE/JAMMING INITIATED FROM LEO CONSTELLATION(S)  (ARTES 4.0 SPL 4S 3D.030)

    The objective of the activity is to examine the potential threat of New Space constellations to form a botnet able to generate intentional interference for other communications satellites, and to propose and assess relevant mitigation mechanisms.

  • CHARACTERISATION OF ATMOSPHERIC TRANSMITTANCE AT WAVELENGTHS TO BE USED IN TERABIT OPTICAL COMMUNICATIONS (ARTES 4.0 SL SPL 6C.053)

    The objective of the activity is to characterise narrow attenuation lines (due to absorption or scattering) in the optical C-band (and ideally L-band) and to evaluate their effect on the communication performance of terabit-per-second feeder links. The activity will develop a testbed to perform measurements and to compare them against existing models. Targeted Improvements: 100% reliability improvement of terabit per second optical communicati…

  • SOLAR ARRAY TO POWER DIRECTLY AN ELECTRICAL PROPULSION SYSTEM (ARTES AT 4F.163) (ON DELEGATION REQUEST)

    The objective of the activity is to develop and test coupons to pave the way for high-power, high-voltage solar arrays (e.g., 300 Vplus) feeding directly electric propulsion systems. Targeted Improvements:- Increased solar array output voltage from 100V to at least 300V for high power solar arrays.- Enabling direct feed of solar array power to electrical propulsion systems. Description: Inorder to feed power generated by solar arrays directly…

  • HIGH EFFICIENCY SILICON-BASED AMPLIFIER FOR KA-BAND USER TERMINALS (ARTES AT 7B.067) (ON DELEGATION REQUEST)

    The objective of this activity is to design, manufacture and test Ka-band high efficiency amplifier monolithic microwave integratedcircuit (MMIC) based on silicon technology for user terminals. Targeted Improvements:- Amplifier power added efficiency above 30% with a noise power ratio of 15 dB minimum- Key building block for future highly integrated Ka-band user terminal active antennas. Description:The satcom market requires highly integrated…

  • OPTICAL GROUND STATION NETWORK TESTBED (ARTES 4.0 SL SPL 6B.128)

    The objective of this activity is to develop an optical ground station network testbed to which parties can connect their ground station and prototype network-related aspects for optical and quantum communications in an operational network environment. Targeted Improvements:Reduction of manual link planning and analysis effort. Testing and simulation capabilities for optical end-to-end data delivery. Description:The objective of this activity…

  • IMPLEMENTATION OF SOFTWARE MITIGATION SOLUTIONS FOR RADIATION-INDUCED SINGLE EVENT EFFECTS (ARTES 4.0 AT 5C.490)

    The objective of the activity is to de-risk software mitigation techniques for radiation effects on a family of high-performance processors embedded in System on Chip (SoC) components. The activity will identify, on one or more processors of interest for the industry, radiation-induced failure modes and will implement appropriate software mitigation techniques with reuse or development of small FPGA IPs if needed. Targeted Improvements: Enable…

  • RESILIENT AND SECURE MULTIMEDIA COMMUNICATIONS FROM UNMANNED AERIAL/MARITIME VEHICLES USING MULTIPLE UNRELIABLE NETWORKS (ARTES 4.0 4S SPL 3A.172) (ON DELEGATION REQUEST)

    The objective of this activity is the design and demonstration of network protocols that can use multiple unreliable satellite and terrestrial networks for increased resilience and security for retrieval of multimedia data with multiple QoS classes from drones and unmanned maritime vessels. Targeted Improvements: This technique will allow at least 50% increase in the number of UAVs (Unmanned Aerial Vehicles) that can be supported in the same s…

  • PROTOCOL FOR 5G INTEGRATED NETWORKS TO ENHANCE RELIABLE POSITIONING (ARTES 4.0 SPL 5G/6G 3F.024)

    The objective of this activity is to design and develop a simulation testbed for secure delivery of assistance data with5G satellite networks to enhance positioning.Targeted Improvements:Foster the use of 5G satellite networks to enhance positioning with ubiquitous, reliable, and secure delivery of assistance data. Enable secure time and frequency synchronisation in existing or future telecommunication infrastructure.Description:Various positi…

  • PRECODING FOR LOW EARTH ORBIT SATELLITE SYSTEMS (ARTES AT 3C.027) (ON DELEGATION REQUEST) - EXPRO+

    The objective of the activity is to develop precoding techniques for the forward link of multi-beam LEO satellite systems operatingin full frequency reuse. The activity will target the conventional single-satellite precoding, as well as precoding across adjacentsatellites having beams with overlapping footprints. The developed techniques will be implemented and tested in a software simulator able to assess the performance at both link level an…