Funding

This page displays the ARTES Invitation To Tenders (ITTs) which are published on ESA-STAR. If you are looking for a specific element select from the list provided and click on the Apply button to start the search and display the results.

Funding of the individual Prime or subcontractors, for ARTES Core Competitiveness and ARTES Applications activities, is subject to authorisation of the required ARTES budget by the related National Delegations. Therefore, bidding teams are requested to inform their National Delegation(s) of their intention to participate in funded activities already before submitting a proposal.

The official information platform for providing potential bidders all the relevant documentation and details concerning the intended and issued Invitations To Tender (ITTs) for Open Competitions and Direct Negotiations is ESA-STAR - managed and operated by the ESA Procurement Department.

  • KA-BAND RADIO FREQUENCY FRONT-END RESISTANT TO INTENTIONAL INTERFERENCE FOR SECURE TTC (ARTES 4.0 4S SPL 4G.041)

    The objective of the activity is to design, manufacture and test a Scaled Engineering Model of rugged Ka-band RF front-end for secure TTC applications that will enable technologies for mitigation of intentional interference. Targeted Improvements: Ability to operate under severe Radio Frequency Interference. Description: TTC is a key equipment for all satellites since it provides the umbilical cord to the control station(s). It has to operate…

  • DEVELOPMENT OF A SOFTWARE BASED GENERIC OPTICAL GROUND STATION MODEL (ARTES 4.0 SL SPL 6B.126)

    The objective of this activity is to develop and test a software platform acting as an abstraction layer between the optical groundstation software client and the various software and hardware modules and their interfaces. Software implementation to be agnostic to operating systems and shall be based on object-oriented techniques to enable creation of a generic optical ground station model prior to programming. Testing shall and use commercial…

  • MULTICAST OPTICAL HEAD UNIT (ARTES 4.0 SL SPL 5G.037)

    Objective:The objective of the activity is to develop a space-based point to multipoint optical terminal.Targeted Improvements:The MOHU would reduce the number of required Optical Head Units by a factor greater than 2. The MOHU should target a mass and sizeless than x1.5 the mass and size of the combined individual Optical Head Units.Description:Today the implementation of simultaneous optical space to ground links (Optical Feeder Links) requi…

  • COMPACT, HIGH TEMPERATURE AND MODULAR 100 W-CLASS ELECTRONIC POWER CONDITIONER FOR KU- AND KA-BAND TRAVELLING WAVE TUBES (ARTES AT 5C.514)

    The objective of this activity is to develop and test a modular 100W-class Ku- and Ka-band universal compact Electronic Power Conditioner (EPC) based on MHz-range switching frequency, high temperature, wide bandgap technology and planar magnetics. This will include an efficient thermal management design.Targeted Improvements: - Mass, footprint and volume reduction up to 30% whilst maintaining efficiency comparable to current state of art.- Com…

  • KA-BAND TRANSMIT SPARSE ACTIVE PHASED ARRAY AND BEAMFORMING NETWORKS FOR NGSO USER LINKS (ARTES AT 5B.240)

    The objective of this activity is to design, manufacture and test a partial RF breadboard of a transmit Ka-band, active phased array antenna and associated beamforming network for user links NGSO, exploiting irregular layouts for the radiating elements and beamforming networks.Targeted Improvements: In comparison to a standard, fully populated array:- 25% reduction in the number of active controls,- 5% increase in the DC to RF power efficiency…

  • MASS MEMORY UNIT WITH 100 GIGABIT PER SECOND WRITE RATE CLASS FOR LOW EARTH ORBIT COMMUNICATION APPLICATIONS (ARTES AT 5C.498) (ON DELEGATION REQUEST)

    The objective of this activity is to design, manufacture and test a memory unit breadboard offering interface port and memory read and write speeds at 100 GigaBit per second and a capacity of at least 3 TeraBits for interconnected constellation telecommunication systems. Targeted Improvements: Improvement of the write speed by a factor of 10 compared to FLASH-based mass memories. Description:Future Low Earth Orbit (LEO) constellations with hig…

  • SECURITY ASSESSMENT, TESTING AND VALIDATION CAPABILITY FOR INNOVATIVE SECURE COMMUNICATIONS AND QUANTUM TECHNOLOGIES (ARTES 4.0 4S SPL 3D.018) RE-ISSUE

    The objectives of the activity are to identify the needs and requirements for new security assessment capabilities for satcom systems and their components, define related architectural solutions and develop prototypes of the main components of these capabilities.Targeted Improvements: Enabling testing, verification and validation of advanced technologies in the domain of cybersecurity, modern telecom and quantum security (Quantum Key Distribut…

  • BEAM FORMING CHIP FOR DIRECT RADIATING ARRAY ANTENNAS FOR W-BAND FEEDER LINKS (ARTES AT 5C.457) (ON DELEGATION REQUEST)

    The objective of this activity is to design, manufacture and test an engineering model of a beam forming network chip to support direct radiating array antennas in W-band for future receive chain feeder links in ultra-high throughput satellite telecommunication payloads.Targeted Improvements: Enabling technology for reconfigurable antennas in W-band for ultra-high-throughput satellite feederlinks (at least 1 Tbit/s throughput) not existing tod…

  • IN ORBIT EXPERIMENT OF AUTONOMOUS DEPLOYMENT AND EARLY OPERATIONS FOR TELECOM CONSTELLATION SATELLITES (ARTES AT 3E.024) (ON DELEGATION REQUEST)

    The objective of this activity is to design and perform an in-orbit experiment investigating autonomous deployment and early operations for telecom constellation satellites. This includes the development of command and data-handling hardware as well as AI/ML based operational algorithms developed on-ground.Targeted Improvements: Increase of onboard autonomy by 50% (i.e. include the key number of autonomous functions), including attitude acquis…

  • ZERO-TRUST ARCHITECTURE FOR LOW EARTH ORBIT REGENERATIVE PAYLOADS  ( ARTES 4.0 SPL 4S 3D.029)

    The objective of this activity is to design+ implement+ and validate a zero-trust architecture for a Low Earth Orbit regenerative 5G gNodeB+ that mitigates the security risks specific to 5G Non-Terrestrial Networks.

  • HIGH IMPULSE ARGON ELECTRIC THRUSTER (ARTES AT 4B.181)

    The objective of the activity is to design, manufacture and test an electric thruster using Argon propellant, compatible with the long lifetime and high total impulse requirements of telecommunication satellites in GEO and for constellations.Targeted Improvements:- Novel capability to operate with Argon propellant not existing today.- Improved lifetime and Total Impulse per kW(N.s/kW) by a factor of 2.- Decreased complexity of the thruster arc…

  • SOLAR ARRAY WITH LATCHED SHALLOW CURVED SURFACE FOR IMPROVED DEPLOYED STIFFNESS (ARTES AT 4F.161) (ON DELEGATION REQUEST)

    The objective of the activity is to develop, manufacture and test a latch to enhance the deployed stiffness of an existing array, by means of a slight repositioning of panels. Targeted Improvements: Increase the frequencies of the deployed array by 30%.Description: Most telecommunication solar arrays comprise in-line panels, arranged in a row. Some include lateral panels, forming a cross configuration. In the case of the latter, the frequency…

  • FAST LOCKING FLANGE FOR WAVEGUIDE CONNECTIONS (ARTES AT 6B.094) (ON DELEGATION REQUEST)

    The objective of this activity is to design, develop and test a device that will enable fast (almost instantaneous) connection of two waveguides eliminating need for laborious removal and reinstallation of numerous nuts and bolts from the waveguide flanges. The connection achieved with this assembly shall demonstrate high reliability both in mechanical and electrical aspects and minimise the risk of assembly error. Targeted Improvements:- 95%…

  • ARTES 4.0 SPL 4S 3A.199 RADIO RESOURCE MANAGEMENT TECHNIQUES FOR JAMMING MITIGATION IN NGSO CONSTELLATIONS

    The objective of the activity is to design, develop and test jamming mitigation strategies for NGSO broadband secure systems based on adaptive radio resource management algorithms.

  • ONBOARD DATA HANDLING SUB-SYSTEM FOR AUTONOMOUS SATELLITES (ARTES AT 4G.044)

    The objective is to develop an onboard data handling architecture capable of autonomously acquiring, processing and interpreting housekeeping and telemetry data and taking the required actions without ground intervention. The activity will develop a data handlingsub-system demonstrator to validate the intelligent functionalities, including prognostic and health management (PHM) capabilitiesTargeted Improvements: Enabling technology development…

  • BREADBOARDING OF CRITICAL TECHNOLOGIES FOR A MULTI-BEAM SATELLITE RECEIVER FOR AIRCRAFT MODE-S SIGNALS (ARTES 4.0 4S SPL 5A.082) (ON DELEGATION REQUEST)

    The objective of the activity is to design, develop and test payload technologies compliant with multi-beam receivers for satellite-based air traffic surveillance. Critical breadboarding will be carried out to demonstrate the concept suitable for use on small satellites in LEO or MEO. Targeted Improvements: 50% reduced payload power consumption, mass and volume compared to current technology.Increase the probability of message detection by a f…

  • 10W PER MM CLASS THERMALLY ENHANCED HIGH EFFICIENCY MICROWAVE POWER AMPLIFIERS (ARTES 4.0 AT 5C.491) (RE-ISSUE)

    The objective of this activity is to design, manufacture and test a breadboard of a high-power amplifier in Ku-band or above with 10 W/mm class of power density in continuous wave operation. The selected manufacturing process will allow a smaller chip size with reduced junction temperature, reduced thermal memory effects and improved efficiency.Targeted Improvements:- 3-5 times improvementin power density.- Junction temperature reduction of te…

  • HIGH EFFICIENCY SILICON-BASED AMPLIFIER FOR KA-BAND USER TERMINALS (ARTES AT 7B.067) (ON DELEGATION REQUEST)

    The objective of this activity is to design, manufacture and test Ka-band high efficiency amplifier monolithic microwave integratedcircuit (MMIC) based on silicon technology for user terminals. Targeted Improvements:- Amplifier power added efficiency above 30% with a noise power ratio of 15 dB minimum- Key building block for future highly integrated Ka-band user terminal active antennas. Description:The satcom market requires highly integrated…

  • POWER EFFICIENT DESIGN OF RADIO FREQUENCY PAYLOAD ALGORITHMS ON SYSTEM ON CHIP (ARTES AT 5C.513)

    The objective of the activity is to identify and benchmark power efficient radio frequency algorithms on complex System on Chip (SoC) devices. Power efficient algorithms for at least two applications case (e.g. beamforming, decoding/encoding, neural networks...) will be designed, developed and tested and compared to programmable logic only implementation.Targeted Improvements: 50% reductionpower consumption for radio frequency algorithms with…

  • EUROPEAN CHIP INDUCTOR FOR POINT OF LOAD CONVERTERS IN TELECOMMUNICATION SATELLITES (ARTES 4.0 AT 5C.499)

    The objective of the activity is to design, manufacture and test surface mount chip inductors enabling low voltage (down to 0.8 V range) stability, fast transient response, high-speed switching capability and efficient power conversion of point of load(POL) converters, as needed for next generation digital integrated circuits in telecommunication satellites.Targeted Improvements:- Enablinga European source.- 20% mass and volume reduction and 2…

  • DIGITAL TWIN FOR ON-ORBIT ASSEMBLY AND MANUFACTURING OF VERY LARGE ANTENNAS (ARTES AT 5B.235)

    The objective of the activity is to develop and test a digital-twin for on-orbit assembly and manufacturing of antennas up to 30-50metres diameter. An end-to-end manufacturing process will be selected and guidance, navigation and control techniques for assembly and manufacturing on-orbit will be developed. A simple large reflector antenna will be designed, and assembly and manufacturing will be evaluated with the developed digital twin.Targete…

  • RAPID AND FLEXIBLE END-TO-END MANUFACTURING PROCESS FOR COMPLEX-SHAPED COMPOSITE REFLECTOR ANTENNA (ARTES 4.0 AT 5B.226)

    The objective of the activity is to develop rapid and flexible advanced manufacturing techniques, with a full digital workflow, forhigh volume production of complex-shaped composite reflector antennas from 1 to 3.5 metres in diameter.Targeted Improvements:Reduction in composite reflector manufacturing time by a factor of five in comparison to standard metallic mould processes.Description:Today, the manufacturing lead time of reflector antennas…

  • LUNAR LASER COMMUNICATION TERMINAL (ARTES 4.0 SL SPL 5G.045)

    Objective: The objective of the activity is to first design a Laser Communication Terminal (LCT) concept suitable for communicationover lunar distances. In a second step, the activity will develop an engineering model of a CCSDS compatible transceiver with critical functions including coding, synchronisation, and modulation. Targeted Improvements: Enabling a European or Canadian lunar communication terminal operating with a data rate one order…

  • PRECODING FOR LOW EARTH ORBIT SATELLITE SYSTEMS (ARTES AT 3C.027) (ON DELEGATION REQUEST) - EXPRO+

    The objective of the activity is to develop precoding techniques for the forward link of multi-beam LEO satellite systems operatingin full frequency reuse. The activity will target the conventional single-satellite precoding, as well as precoding across adjacentsatellites having beams with overlapping footprints. The developed techniques will be implemented and tested in a software simulator able to assess the performance at both link level an…

  • MAGNETIC BEARING SYSTEMS FOR HIGH-SPEED ROTARY MECHANISMS (ARTES 4.0 AT 4E.092)

    Objective: The objective of the activity is to design, manufacture and test a magnetic bearing system for high-speed rotary mechanisms in telecommunication spacecraft applications (e.g. reaction wheels or thermal control pumps and compressors). Targeted Improvements:- Increase rotation speed by a factor of 2 (resulting in higher angular momentum capability). - Increase lifetime by a factor of 2 (due to contact-less bearings and no lubrication)…