Funding

This page displays the ARTES Invitation To Tenders (ITTs) which are published on ESA-STAR. If you are looking for a specific element select from the list provided and click on the Apply button to start the search and display the results.

Funding of the individual Prime or subcontractors, for ARTES Core Competitiveness and ARTES Applications activities, is subject to authorisation of the required ARTES budget by the related National Delegations. Therefore, bidding teams are requested to inform their National Delegation(s) of their intention to participate in funded activities already before submitting a proposal.

The official information platform for providing potential bidders all the relevant documentation and details concerning the intended and issued Invitations To Tender (ITTs) for Open Competitions and Direct Negotiations is ESA-STAR - managed and operated by the ESA Procurement Department.

  • HIGH BANDWIDTH INTERFACE RADIATION MITIGATION IP CORE FOR PROGRAMMABLE LOGIC DEVICES (ARTES 4.0 AT 5C.489)

    The objective of the activity is to develop, implement and test a 100 Gbps class interface radiation mitigation IP core for programmable logic devices for application in Low Earth and Geostationary Orbits. This includes hardware radiation characterisation and testing. Targeted Improvements: 3 to 4 times improvement of high-speed serial link data rate (from 32 Gbps to 112 Gbps) under radiation conditions. Description: State of the art programma…

  • CYBERSECURITY MAKERSPACE: IDENTIFICATION, EXPLORATION AND ASSESSMENT OF CYBERSECURITY CHALLENGES TO SATCOM SYSTEMS  (ARTES 4.0 SPL 4S 3D.025)

    The objective of this activity is to enable rapid delivery of small proof-of-concepts and technical investigations that are addressing emerging cybersecurity challenges in the field of cybersecurity for satcom systems.Procurement Policy: C(2) = A relevant participation (in terms of quality and quantity) of non-primes (incl. SMEs) is required. For additional information please go to:…

  • END-TO-END ADAPTIVE OPTICS BI-DIRECTIONAL MODELLING TOOL FOR OPTICAL FEEDER LINKS (ARTES 4.0 SL SPL 6C.035) - EXPRO+

    Objective: This activity aims at developing a modular software tool allowing to simulate the improvement from employing adaptive optics (AO) systems in bidirectional optical ground station (OGS) to satellites optical communication and quantum links scenarios (e.g. GEO, LEO, MEO). Targeted Improvements: 50% improvement of design time and computation time to dimension optical communication systems operating through atmospheric turbulence enhance…

  • BREADBOARDING OF CRITICAL TECHNOLOGIES FOR A MULTI-BEAM SATELLITE RECEIVER FOR AIRCRAFT MODE-S SIGNALS (ARTES 4.0 4S SPL 5A.082) (ON DELEGATION REQUEST)

    The objective of the activity is to design, develop and test payload technologies compliant with multi-beam receivers for satellite-based air traffic surveillance. Critical breadboarding will be carried out to demonstrate the concept suitable for use on small satellites in LEO or MEO. Targeted Improvements: 50% reduced payload power consumption, mass and volume compared to current technology.Increase the probability of message detection by a f…

  • NETWORK EMBEDDED HYBRID CONNECTIVITY OVER TERRESTRIAL AND SATELLITE 5G ACCESS (ARTES 4.0 SPL 5G/6G 3F.012)

    Objective: The objective of this activity is to design, develop and test a 5G system to support upper layer Access Traffic Switching, Steering and Splitting (ATSSS) mechanisms relating a User Equipment (UE) data session across dual terrestrial and satellite 5G access, as well as over dual 5G satellite access.Targeted Improvements:- Enable dual 3GPP access- Significant part reduction - Network and device centric system- Enable 5G Core Network w…

  • BACKGROUND LIGHT AND ATMOSPHERE METROLOGY FOR QUANTUM KEY DISTRIBUTION AT URBAN LOCATIONS (4S SAGA)

    Development of tools and hardware and the execution of a measurement campaign for background light and atmosphere conditions for Quantum Key Distribution (QKD) at urban location (major cities and metropolitan areas) under ARTES 4.0 Space Systems for Safety and Security (4S) Strategic Programme Line. These measurement results are an important check point to validate the design of the SAGA system. The background light and atmosphere metrology ac…

  • DEVELOPMENT OF A TESTBED TO ASSESS SPACECRAFT MATERIALS ROBUSTNESS AGAINST ATOMIC OXYGEN IN VERY LOW EARTH ORBIT ENVIRONMENT (ARTES AT 4A.101)

    The Objective: The objective of the activity is to design, manufacture a testbed to determine materials behaviour of atomic oxygen fluence exposure representative in Very Low Earth Orbit (VLEO) environment. With the help of the testbed, in a second step, an aerodynamic and oxygen fluence resistant coating will be developed and evaluated as needed for protection of exposed parts of the spacecraft to the VLEO environment.Targeted Improvements: E…

  • PROTOCOL STACK ENABLING VOICE-CALL USING NON-TERRESTRIAL IOT WAVEFORM (ARTES 4.0 SPL 5G/6G 3F.013)

    The objective of this activity is to develop the software protocol stack for Release 18 enhancements related to 5G New for Radio (NR) for Non-Terrestrial Networks. The software protocol stack development shall be based on a testbed considering both the User Equipment (UE) and g-NodeB (gNB) features and operational procedures.Targeted Improvements:Enable 5G NR NTN system performance simulations with the latest Release 18 modifications.Descripti…

  • RAPID AND FLEXIBLE END-TO-END MANUFACTURING PROCESS FOR COMPLEX-SHAPED COMPOSITE REFLECTOR ANTENNA (ARTES 4.0 AT 5B.226)

    The objective of the activity is to develop rapid and flexible advanced manufacturing techniques, with a full digital workflow, forhigh volume production of complex-shaped composite reflector antennas from 1 to 3.5 metres in diameter.Targeted Improvements:Reduction in composite reflector manufacturing time by a factor of five in comparison to standard metallic mould processes.Description:Today, the manufacturing lead time of reflector antennas…

  • 5G AUTOMOTIVE MAKERSPACE (ARTES 4.0 SPL 5G/6G 3F.010)

    Objective: The objective of this activity is to design, develop and test automotive prototypes following 5GAA workplans and increase the number of companies working on automotive satellite communications by 30%. Targeted Improvements: Novel hand-over methods between satellite and terrestrial networks supporting use cases as formulated by 5GAA and miniaturised automotive terminal baseband units.Description: The 5G Automotive Association (5GAA)…

  • MULTI-PLATFORM DUAL BAND CONFIGURABLE POWER AMPLIFIER FOR AVIONIC TERMINALS (ARTES AT 7C.052) (ON DELEGATION REQUEST)

    Objective: The objective of the activity is to develop, manufacture and test a breadboard of a L- and C-band configurable power amplifier to enable dual band operation of avionic terminals. It shall demonstrate 200W peak power per channel and a 10dB dynamic rangewith a constant average power added efficiency of at least 50% for both bands, without compromising linearity performance. The breadboard shall include driver, main and peak amplifier,…

  • SYSTEM ARCHITECTURE AND WAVEFORM FOR AERONAUTICAL MOBILE-SATELLITE ROUTE SAFETY AND SECURITY SERVICES IN C-BAND ( ARTES 4.0 SPL 4S 3A.198)

    The objective of this activity is to design, develop and validate a system architecture and suitable waveform for an Aeronautical Mobile-Satellite (Route) Services (AMS(R)S) constellation in C-band for safety and security services.

  • HANDOVER ENGINE AND TESTBED FOR SATELLITE-BASED 5G NON-TERRESTRIAL NETWORKS (NTNS) (ARTES 4.0 SPL 5G/6G 3F.015)

    The objective of this activity is to develop a machine learning (ML) engine that optimises handover between two different 5G networks, where at least one of them is a satellite-based non-terrestrial network (NTN). The activity will also provide the testbed to assess the handover key performance indicators in a laboratory environment.Targeted Improvements:Identify and avoid higher risk handovers improving thus the handover success rate to reach…

  • MAGNETIC BEARING SYSTEMS FOR HIGH-SPEED ROTARY MECHANISMS (ARTES 4.0 AT 4E.092)

    Objective: The objective of the activity is to design, manufacture and test a magnetic bearing system for high-speed rotary mechanisms in telecommunication spacecraft applications (e.g. reaction wheels or thermal control pumps and compressors). Targeted Improvements:- Increase rotation speed by a factor of 2 (resulting in higher angular momentum capability). - Increase lifetime by a factor of 2 (due to contact-less bearings and no lubrication)…

  • WEATHER-PROOF OPTICAL COMMUNICATION GROUND TERMINAL (ARTES 4.0 SL SPL 6C.050 ) EXPRO PLUS

    The objective of this activity is to evaluate the pros and cons of a weather-proof optical ground terminal (without protective domeenclosure) and to breadboard critical sub-systems. Targeted Improvements:At least 50% faster optical ground station deployment.Description:Today telescopes for ground based free-space optical satellite communication are originating from astronomical telescopes. The current need for optical ground telescopes has cha…

  • USER TERMINAL SIGNALLING FOR NON-GEOSTATIONARY SATELLITE NETWORKS (ARTES 4.0 AT 7B.074) (RE-ISSUE)

    The objective of the activity is to design, implement and validate signalling and control techniques for satellite user terminals in a non-geostationary satellite network where the user terminals can login and function in the network without necessarily relying on the assistance from global navigation satellite services. Targeted Improvements: Enable autonomous commissioning, login and operation of satellite user terminals within a non-geostat…

  • SMALLSAT PLATFORM WITH SELF-TRANSFER CAPABILITY INTO GEOSYNCHRONOUS ORBIT (ARTES AT 3E.001) (ON DELEGATION REQUEST)

    The objective of this activity is to develop radiation tolerant platform technologies and semi-autonomous orbit transfer capabilityfor small satellite platforms. An experimental small satellite will be designed, manufactured and launched. The satellite will feature the platform technologies developed as well as a simple telecommunication payload allowing experiments during orbit raising to GEO as well as in GSO. Targeted Improvements: Enabling…

  • COMPACT, HIGH TEMPERATURE AND MODULAR 100 W-CLASS ELECTRONIC POWER CONDITIONER FOR KU- AND KA-BAND TRAVELLING WAVE TUBES (ARTES AT 5C.514)

    The objective of this activity is to develop and test a modular 100W-class Ku- and Ka-band universal compact Electronic Power Conditioner (EPC) based on MHz-range switching frequency, high temperature, wide bandgap technology and planar magnetics. This will include an efficient thermal management design.Targeted Improvements: - Mass, footprint and volume reduction up to 30% whilst maintaining efficiency comparable to current state of art.- Com…

  • POWER EFFICIENT ONBOARD ANALOGUE PHOTONIC INTERCONNECTS FOR HIGH THROUGHPUT SATELLITES (HTS) (ARTES 4.0 SL SPL 5F.050)

    The objective of the activity is to develop very low power analogue photonic interconnects for linking antennas to the on-board digital processor in high throughput satellites, also in view of an all-optical satellite implementationTargeted Improvements:Increase connector density by 100% through the replacement of the coaxial cable connectors with multi-fibre connectors, more than halvingthe harness mass and volume linking the antennas to the…

  • DEVELOPMENT OF A SOFTWARE BASED GENERIC OPTICAL GROUND STATION MODEL (ARTES 4.0 SL SPL 6B.126)

    The objective of this activity is to develop and test a software platform acting as an abstraction layer between the optical groundstation software client and the various software and hardware modules and their interfaces. Software implementation to be agnostic to operating systems and shall be based on object-oriented techniques to enable creation of a generic optical ground station model prior to programming. Testing shall and use commercial…

  • SINGLE-CHIP 71-86 GHZ TRANSCEIVER RFIC FOR AERONAUTICAL SATCOM APPLICATIONS (ARTES AT 6A.074) (ON DELEGATION REQUEST)

    The objective of the activity is to design, manufacture and test an integrated W-band transceiver Radio Frequency Integrated Circuit (RFIC) configurable as transmitter and receiver covering the 71-86 GHz band for aeronautical satcom applications. Targeted Improvements: Enable satellite aeronautical broadband services in W-band. Description: The maturity of Silicon technologies allows for the implementation of multifunctional and reconfigurable…

  • ASIC/FPGA WITH 112 GBPS OPTICAL I/OS (ARTES 4.0 SL SPL 5C.480)

    The objective of this activity is to develop the technology step needed to enable the use of optical interconnects at speeds of up to 112 Gbps. This should be demonstrated through testing of an integrated digital signal functions (ASIC and FPGAs) with the developed electro-optic transceiver photonic integrated circuits that form the optical I/Os to replace traditional electrical I/O.Targeted Improvements:Increase the data rate throughput up to…

  • IN ORBIT EXPERIMENT OF AUTONOMOUS DEPLOYMENT AND EARLY OPERATIONS FOR TELECOM CONSTELLATION SATELLITES (ARTES AT 3E.024) (ON DELEGATION REQUEST)

    The objective of this activity is to design and perform an in-orbit experiment investigating autonomous deployment and early operations for telecom constellation satellites. This includes the development of command and data-handling hardware as well as AI/ML based operational algorithms developed on-ground.Targeted Improvements: Increase of onboard autonomy by 50% (i.e. include the key number of autonomous functions), including attitude acquis…

  • SPACEBORNE W-BAND HIGH POWER TRAVELLING WAVE TUBE (ARTES AT 5C.486) (ON DELEGATION REQUEST)

    The objective of this activity is to design, develop and test a breadboard of high-power W-band travelling wave tube (TWT) to meet the requirements of Very High Throughput Satellites.Targeted Improvements:Enable a European source of W-band TWT with 5 GHz instantaneous bandwidth, 100 W power output and at least 30% efficiency.Description:High Throughput Satellites (HTS) and Very High Throughput Satellites (VHTS) already use Q/V band frequencies…

  • KA-BAND TRANSMIT SPARSE ACTIVE PHASED ARRAY AND BEAMFORMING NETWORKS FOR NGSO USER LINKS (ARTES AT 5B.240)

    The objective of this activity is to design, manufacture and test a partial RF breadboard of a transmit Ka-band, active phased array antenna and associated beamforming network for user links NGSO, exploiting irregular layouts for the radiating elements and beamforming networks.Targeted Improvements: In comparison to a standard, fully populated array:- 25% reduction in the number of active controls,- 5% increase in the DC to RF power efficiency…