Funding

This page displays the ARTES Invitation To Tenders (ITTs) which are published on ESA-STAR. If you are looking for a specific element select from the list provided and click on the Apply button to start the search and display the results.

Funding of the individual Prime or subcontractors, for ARTES Core Competitiveness and ARTES Applications activities, is subject to authorisation of the required ARTES budget by the related National Delegations. Therefore, bidding teams are requested to inform their National Delegation(s) of their intention to participate in funded activities already before submitting a proposal.

The official information platform for providing potential bidders all the relevant documentation and details concerning the intended and issued Invitations To Tender (ITTs) for Open Competitions and Direct Negotiations is ESA-STAR - managed and operated by the ESA Procurement Department.

  • KU AND KA DUAL-BAND TRANSMIT ACTIVE PHASED ARRAY (ARTES AT 5B.236)

    The objective of this activity is to design, develop and test enabling technologies for multi-frequency transmit active antennas. This will include antenna radiating elements, beamforming techniques (analogue vs hybrid), active elements customised in order to cover both the Ku and Ka transmit frequency bands, integrated into a breadboard. Targeted Improvements: Enabling dual Ku and Ka-band transmit active phased arrays. Description: Active ant…

  • HIGH EFFICIENCY SILICON-BASED AMPLIFIER FOR KA-BAND USER TERMINALS (ARTES AT 7B.067) (ON DELEGATION REQUEST)

    The objective of this activity is to design, manufacture and test Ka-band high efficiency amplifier monolithic microwave integratedcircuit (MMIC) based on silicon technology for user terminals. Targeted Improvements:- Amplifier power added efficiency above 30% with a noise power ratio of 15 dB minimum- Key building block for future highly integrated Ka-band user terminal active antennas. Description:The satcom market requires highly integrated…

  • EUROPEAN CHIP INDUCTOR FOR POINT OF LOAD CONVERTERS IN TELECOMMUNICATION SATELLITES (ARTES 4.0 AT 5C.499)

    The objective of the activity is to design, manufacture and test surface mount chip inductors enabling low voltage (down to 0.8 V range) stability, fast transient response, high-speed switching capability and efficient power conversion of point of load(POL) converters, as needed for next generation digital integrated circuits in telecommunication satellites.Targeted Improvements:- Enablinga European source.- 20% mass and volume reduction and 2…

  • DIGITAL TWIN OF A HIGH VOLTAGE MODULE FOR ELECTRONIC POWER CONDITIONERS (EPC) OR POWER PROCESSING UNITS (PPUS) (ARTES AT 4B.183)

    The objective of the activity is to develop a digital model of a high voltage module typically used in power processing units for electric propulsion or travelling wave tube amplifiers. This model or "digital twin" shall enable an in-depth evaluation which is today only possible by test.Targeted Improvements: Enabling a new approach to achieve innovation acceleration of high voltage module design and test, leading to:- decrease of th…

  • BREADBOARDING OF CRITICAL TECHNOLOGIES FOR A MULTI-BEAM SATELLITE RECEIVER FOR AIRCRAFT MODE-S SIGNALS (ARTES 4.0 4S SPL 5A.082) (ON DELEGATION REQUEST)

    The objective of the activity is to design, develop and test payload technologies compliant with multi-beam receivers for satellite-based air traffic surveillance. Critical breadboarding will be carried out to demonstrate the concept suitable for use on small satellites in LEO or MEO. Targeted Improvements: 50% reduced payload power consumption, mass and volume compared to current technology.Increase the probability of message detection by a f…

  • DUAL BAND KU- AND KA-BAND POWER AMPLIFIER FOR FUTURE FLEXIBLE PAYLOADS (ARTES AT 5C.515)

    The objective of the activity is to design, manufacture and test an engineering model of a multi-band (Ku and Ka-band) integrated power amplifier for application in Lower Earth Orbit satellites, enabling seamless flexibility and reconfigurability for active antenna arrays. Targeted Improvements: Enabling technology for seamless Ku- and Ka-band flexible payloads:- reduces mass and volume by 50%,- improves reliability, bill of material and quali…

  • PRECODING FOR LOW EARTH ORBIT SATELLITE SYSTEMS (ARTES AT 3C.027) (ON DELEGATION REQUEST) - EXPRO+

    The objective of the activity is to develop precoding techniques for the forward link of multi-beam LEO satellite systems operatingin full frequency reuse. The activity will target the conventional single-satellite precoding, as well as precoding across adjacentsatellites having beams with overlapping footprints. The developed techniques will be implemented and tested in a software simulator able to assess the performance at both link level an…

  • RELIABLE SIMPLE ELECTRICAL INSULATION FOR SATCOM PLATFORMS (ARTES AT 4F.172)

    The objective of the activity is to test electrical insulation methods to replace reliable electrical insulation by reliable simpleelectrical insulation and to provide inputs to guidelines to ECSS-E-ST-20C Rev2.Targeted Improvements:Mass, volume, manufacturing time reduced by a factor of 2 compared to current reliable insulation technologies.Description: Double insulation rules lead tooversize electrical architectures to make them robust to s…

  • RAPID AND FLEXIBLE END-TO-END MANUFACTURING PROCESS FOR COMPLEX-SHAPED COMPOSITE REFLECTOR ANTENNA (ARTES 4.0 AT 5B.226)

    The objective of the activity is to develop rapid and flexible advanced manufacturing techniques, with a full digital workflow, forhigh volume production of complex-shaped composite reflector antennas from 1 to 3.5 metres in diameter.Targeted Improvements:Reduction in composite reflector manufacturing time by a factor of five in comparison to standard metallic mould processes.Description:Today, the manufacturing lead time of reflector antennas…

  • NETWORK EMBEDDED HYBRID CONNECTIVITY OVER TERRESTRIAL AND SATELLITE 5G ACCESS (ARTES 4.0 SPL 5G/6G 3F.012)

    Objective: The objective of this activity is to design, develop and test a 5G system to support upper layer Access Traffic Switching, Steering and Splitting (ATSSS) mechanisms relating a User Equipment (UE) data session across dual terrestrial and satellite 5G access, as well as over dual 5G satellite access.Targeted Improvements:- Enable dual 3GPP access- Significant part reduction - Network and device centric system- Enable 5G Core Network w…

  • EXTENSION OF ELECTRICAL POWER SYSTEM VOLTAGE TO 300V (ARTES AT 4F.146) (ON DELEGATION REQUEST)

    The objective of the activity is to identify, design, manufacture and test critical technology and hardware elements needed for a high voltage electric power system (EPS) for high power telecom applications. This shall include typical primary and secondary DCDC converters and protection circuits (e.g. latching current limiters). Targeted Improvements:- Increase bus voltage up to > 300V, enabling direct drive for electric propulsion;- Reduce…

  • ARTES 4.0 SPL 4S 7B.077 - EMERGENCY LIGHTS FOR CARS IN DISTRESS WITH INTEGRATED TERRESTRIAL AND SATELLITE CONNECTIVITY (ON DELEGATION REQUEST)

    The objective of the activity is to develop and test a prototype of the emergency car light device with direct to satellite communication capability in an emulated environment in laboratory.Procurement Policy: C(1) = Activity restricted to non-prime contractors(incl. SMEs). For additional information please go to:…

  • HIGH BANDWIDTH INTERFACE RADIATION MITIGATION IP CORE FOR PROGRAMMABLE LOGIC DEVICES (ARTES 4.0 AT 5C.489)

    The objective of the activity is to develop, implement and test a 100 Gbps class interface radiation mitigation IP core for programmable logic devices for application in Low Earth and Geostationary Orbits. This includes hardware radiation characterisation and testing. Targeted Improvements: 3 to 4 times improvement of high-speed serial link data rate (from 32 Gbps to 112 Gbps) under radiation conditions. Description: State of the art programma…

  • END-TO-END ADAPTIVE OPTICS BI-DIRECTIONAL MODELLING TOOL FOR OPTICAL FEEDER LINKS (ARTES 4.0 SL SPL 6C.035) - EXPRO+

    Objective: This activity aims at developing a modular software tool allowing to simulate the improvement from employing adaptive optics (AO) systems in bidirectional optical ground station (OGS) to satellites optical communication and quantum links scenarios (e.g. GEO, LEO, MEO). Targeted Improvements: 50% improvement of design time and computation time to dimension optical communication systems operating through atmospheric turbulence enhance…

  • MAGNETIC BEARING SYSTEMS FOR HIGH-SPEED ROTARY MECHANISMS (ARTES 4.0 AT 4E.092)

    Objective: The objective of the activity is to design, manufacture and test a magnetic bearing system for high-speed rotary mechanisms in telecommunication spacecraft applications (e.g. reaction wheels or thermal control pumps and compressors). Targeted Improvements:- Increase rotation speed by a factor of 2 (resulting in higher angular momentum capability). - Increase lifetime by a factor of 2 (due to contact-less bearings and no lubrication)…

  • 5G AUTOMOTIVE MAKERSPACE (ARTES 4.0 SPL 5G/6G 3F.010)

    Objective: The objective of this activity is to design, develop and test automotive prototypes following 5GAA workplans and increase the number of companies working on automotive satellite communications by 30%. Targeted Improvements: Novel hand-over methods between satellite and terrestrial networks supporting use cases as formulated by 5GAA and miniaturised automotive terminal baseband units.Description: The 5G Automotive Association (5GAA)…

  • CRITICAL BREADBOARDING ENABLING THE REMOVAL OF FAILED SMALL SATELLITES FROM LOW EARTH ORBIT (ARTES AT 4A.085) (ON DELEGATION REQUEST)

    The objective of the activity is to design, manufacture and test technologies enabling the removal of failed small satellites (e.g.tumbling) from low earth orbit. Several breadboards will be developed and tested to reduce tumbling and to enable rendezvous and capture.Targeted Improvements: Enabling de-orbiting of large constellations of low Earth orbit telecommunication satellites. Description: In the coming years it is expected that the numbe…

  • ADAPTIVE THERMAL CONTROL OF TELECOM SATELLITES (ARTES 4.0 AT 4D.082) (RE-ISSUE)

    The objective of the activity is to develop and test a breadboard of an electrophoretic panel enabling adaptive thermal control on telecommunication spacecraft. Targeted Improvements:-Enabling technology to allow adaptive control of radiative surfaces.-Reduction in heater power of 40% and in radiator size of 30%. Description: Traditional thermal design balances emissivity and absorption parameters based on surface materials and/or coatings sel…

  • DEVELOPMENT OF A TESTBED TO ASSESS SPACECRAFT MATERIALS ROBUSTNESS AGAINST ATOMIC OXYGEN IN VERY LOW EARTH ORBIT ENVIRONMENT (ARTES AT 4A.101)

    The Objective: The objective of the activity is to design, manufacture a testbed to determine materials behaviour of atomic oxygen fluence exposure representative in Very Low Earth Orbit (VLEO) environment. With the help of the testbed, in a second step, an aerodynamic and oxygen fluence resistant coating will be developed and evaluated as needed for protection of exposed parts of the spacecraft to the VLEO environment.Targeted Improvements: E…

  • PROTOCOL STACK ENABLING VOICE-CALL USING NON-TERRESTRIAL IOT WAVEFORM (ARTES 4.0 SPL 5G/6G 3F.013)

    The objective of this activity is to develop the software protocol stack for Release 18 enhancements related to 5G New for Radio (NR) for Non-Terrestrial Networks. The software protocol stack development shall be based on a testbed considering both the User Equipment (UE) and g-NodeB (gNB) features and operational procedures.Targeted Improvements:Enable 5G NR NTN system performance simulations with the latest Release 18 modifications.Descripti…

  • BROADBAND TUNEABLE KA-BAND FREQUENCY MULTIPLEXERS (ARTES AT 5C.430) (ON DELEGATION REQUEST)

    The objective of this activity is to design, manufacture and test two breadboards corresponding to a reconfigurable 4-channel 30 GHz low power Combiner Frequency Multiplexer (CMUX) and a 4-channel 20 GHz low power frequency Demultiplexer (DMUX). Targeted Improvements: Replacement of conventional fixed-bandwidth CMUX and DMUX equipment with a tuneable solution capable of supporting agile traffic management.Description: Current broadband satelli…

  • PRINTED CIRCUIT BOARD TECHNOLOGY FOR AUTOMOTIVE CONFORMAL ANTENNAS (ARTES 4.0 AT 7C.083)

    The objective of the activity is to investigate, develop and test conformal Printed Circuit Board (PCB) technology using a novel approach, such as additive manufacturing to "print" the antenna for the automotive market. Targeted Improvements: Enabling conformal board of patches with distribution feed and integration of amplifiers on the reverse side, able to follow the shape of a car roof. Description: Conventional PCB technology is…

  •  ARTES 4.0 SPL 4S 5A.087 REGENERATIVE TRANSPONDER WITH BUILT-IN SIGNAL SECURITY PROCESSING FOR USER AUTHORISATION 

    The objective of the activity is to develop technology to prevent non authorised usage of satellite communication bandwidth throughthe implementation and enforcement of on-board authentication protocols. During this activity+ a breadboard that implements such protocol will be developed in a laboratory environment.

  • HANDOVER ENGINE AND TESTBED FOR SATELLITE-BASED 5G NON-TERRESTRIAL NETWORKS (NTNS) (ARTES 4.0 SPL 5G/6G 3F.015)

    The objective of this activity is to develop a machine learning (ML) engine that optimises handover between two different 5G networks, where at least one of them is a satellite-based non-terrestrial network (NTN). The activity will also provide the testbed to assess the handover key performance indicators in a laboratory environment.Targeted Improvements:Identify and avoid higher risk handovers improving thus the handover success rate to reach…

  • SPACEBORNE W-BAND HIGH POWER TRAVELLING WAVE TUBE (ARTES AT 5C.486) (ON DELEGATION REQUEST)

    The objective of this activity is to design, develop and test a breadboard of high-power W-band travelling wave tube (TWT) to meet the requirements of Very High Throughput Satellites.Targeted Improvements:Enable a European source of W-band TWT with 5 GHz instantaneous bandwidth, 100 W power output and at least 30% efficiency.Description:High Throughput Satellites (HTS) and Very High Throughput Satellites (VHTS) already use Q/V band frequencies…