Funding

This page displays the ARTES Invitation To Tenders (ITTs) which are published on ESA-STAR. If you are looking for a specific element select from the list provided and click on the Apply button to start the search and display the results.

Funding of the individual Prime or subcontractors, for ARTES Core Competitiveness and ARTES Applications activities, is subject to authorisation of the required ARTES budget by the related National Delegations. Therefore, bidding teams are requested to inform their National Delegation(s) of their intention to participate in funded activities already before submitting a proposal.

The official information platform for providing potential bidders all the relevant documentation and details concerning the intended and issued Invitations To Tender (ITTs) for Open Competitions and Direct Negotiations is ESA-STAR - managed and operated by the ESA Procurement Department.

  • FUTURE GEOSTATIONARY AMATEUR SATELLITE COMMUNICATIONS PAYLOAD (ARTES FPE 1A.126) - EXPRO PLUS

    ESA will support an initiative to define a future amateur satellite payload in geostationary orbit. ESA proposes that this activitywill be implemented by a combination of collaborative internal, industrial, and amateur efforts, all within the financial envelope as indicated. The activity shall consolidate requirements from the amateur and commercial satellite industry, trade-off several payload options, address the future user segment, develop…

  • VERY LOW FREQUENCY COMMUNICATION EXPERIMENT FOR FUTURE INTERNET OF THINGS APPLICATIONS (ARTES AT 3E.025)

    The objective is to develop, embark and carry out an in-orbit experiment to investigate the performance of specific air interfaces over very low frequencies (in the 24 to 72 MHz range) for very low data rate (Internet of Things (IoT), emergency paging etc) from satellite to ground and vice versa. This experiment will include the channel characterisation (including space weather effects) and communication performance assessment in outdoor and i…

  • CATHODE FOR OXYGEN-RICH ENVIRONMENT (ARTES 4.0 AT 4B.172)

    The objective of the activity is to develop, manufacture and test a cathode for use as a neutraliser in electric propulsion systemsand suitable for operation in an oxygen-rich environment for a long duration of time (e.g. >5 years).Targeted Improvements:Enabling cathode capable of operating in an oxygen-rich environment for more than a few hours.Description: Platforms operating in Very Low Earth Orbit (VLEO) require prolonged and/or continu…

  • POWER MODULE WITH ADVANCED BATTERY MONITORING AND ELECTRICAL POWER SYSTEM TELEMETRY MANAGEMENT CAPABILITIES (ARTES AT 4F.169 )

    The objective of the activity is to develop, manufacture and test a power module with a new concept for Li-Ion battery management and with an advanced Electrical Power System Telemetry able to collect, store, retrieve and process large quantity of data related tothe Status of the Power System (SA, Battery, PCDU). A digital oscilloscope for the Built-In Test function and a function to analysein flight the degradation of solar arrays will be imp…

  • AUTOMOTIVE S-BAND ANTENNA FOR SATELLITE IOT AND 5G TERRESTRIAL COMMUNICATIONS (ARTES SPL 5G 7C.062) (UPON DELEGATION REQUEST)

    Upon Delegation Request (*) The objective of the activity is to develop, manufacture and test an integrated automotive S-band antenna that combines satellite IoT and 5G terrestrial communications. Targeted Improvements: Reduction of antenna form factor from a protruding antenna (e.g. shark fin shape) to planar antenna fully integrated in the car roof. Bandwidth increase from 30 to 90 MHz for satellite and 5G communications. Description: The In…

  • DVB/3GPP HYBRID TERMINAL FOR BROADBAND APPLICATIONS (ARTES 4.0 SPL 5G/6G 7B.078)

    Objective: The objective is to develop and test a Ku or Ka band transparent phased array antenna to provide broadband connectivity on board cars. Targeted Improvements: Develop a new class of phased array antennas for cars able to guarantee a seamless broadband connectivity with LEO satellites. Description: There is today a significant interest to provide broadband connectivity to cars. This request is associated to the need to guarantee emerg…

  • BUILDING BLOCKS FOR DIGITAL TWIN OF ATTITUDE AND ORBIT CONTROL SYSTEM EQUIPMENTS (ARTES 4.0 AT 4C.068)

    The objective of the activity is to develop and test a cyber-physical modelling for a Digital Twin of AOCS sensors. A multi-physic model-based Digital Twin can be used to perform on-board self-calibration employing data-driven techniques and simplify the ground verification of new satellite platforms by having a direct dispersion of the different parameters, hence reducing complex Monte Carlodispersions. Targeted Improvements: Enabling on-boar…

  • SOFTWARE DEFINED SATELLITE AVIONICS DEVELOPMENT ENVIRONMENT (ARTES AT 4G.046)

    The objective of the activity is to produce a software development environment able to configure and build the full avionics software of a satcom using a model-based approachTargeted Improvements:- Reduction of up to 50% of the development time of the avionics system functions,- Enable one avionic platform to support many missions while being fully reconfigurable in flight.Description:The availability of System-on-Chip, powerful micro-control…

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT: INTEGRATED OPTICAL INTERFACES FOR RF PHASED ARRAY ANTENNAS (5F.013 / SL.030)

    Objective:The objective of the activity is to analyse and demonstrate the benefits of replacing coaxial cables/waveguides with fibre optics in large RF phased array antennas. The activity shall identify the best technologies to be employed and it will design, manufacture and test 2 breadboard demonstrators covering both analogue and digital transmission.Targeted Improvements:Order of magnitude mass and volume reduction by substituting the pass…

  • ARTIFICIAL INTELLIGENCE/MACHINE LEARNING FRONT-END MODULE FOR SATCOM 5G/6G INTEGRATED ACCESS-BACKHAUL TRANSCEIVERS (ARTES 4.0 SPL 5G/6G 6B.119)

    The objective of the activity is to develop, implement and test a breadboard of a digital transceiver front-end capable of switching between access and backhaul modes of operation for integrated satcom-terrestrial 5G/6G networks. The transceiver core shall be supported by an AI/ML engine implemented for a set of commercially available hardware and software platforms. The activity shall also provide the testbed to test the AI/ML-based transceiv…

  • STANDALONE SATELLITE TELEMETRY RECORDER AND TRANSMITTER (ARTES AT 4G.045) (ON DELEGATION REQUEST)

    The objective of the activity is to design, manufacture and test an engineering model of a standalone subsystem that will collect telemetry and command logs. In the event of mission failure the device will communicate this to the mission operations team to improve the speed and depth of understanding behind the root-cause of the mission failure. Targeted Improvements: Enabling higher operational reliability of nano- and microsatellites by impr…

  • LARGE ROTATION RANGE, FLEXIBLE PIVOT WITH HOLLOW INNER SHAFT (ARTES 4.0 SL SPL 5B.221) - EXPRO PLUS (ON REQUEST)

    The objective of the activity is to develop a breadboard of a flexible pivot a with large range of rotation angle (goal90 degrees),which features a hollow inner shaft to route an optical beam for optical communications or cables/waveguide in other applications.Targeted Improvements:One order of magnitude improvement in operating lifetime of coarse pointing mechanisms in optical communication terminals compared to ball bearing mechanisms, and a…

  • DIGITAL TWIN OF A HIGH VOLTAGE MODULE FOR ELECTRONIC POWER CONDITIONERS (EPC) OR POWER PROCESSING UNITS (PPUS) (ARTES AT 4B.183)

    The objective of the activity is to develop a digital model of a high voltage module typically used in power processing units for electric propulsion or travelling wave tube amplifiers. This model or "digital twin" shall enable an in-depth evaluation which is today only possible by test.Targeted Improvements: Enabling a new approach to achieve innovation acceleration of high voltage module design and test, leading to:- decrease of th…

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT: RF AND OPTICAL HYBRID GATEWAY ANTENNA (6C.002/SL.024)(ON DELEGATION REQUEST) - EXPRO PLUS

    Objective:The objective of this activity is to investigate a telecom gateway antenna able to work simultaneously in both the RF (Ka- Q/V-Band) and optical wavelengths.Targeted Improvements:This product is currently not available and it would allow a phased migration from RF communications to optical communications.Description:There is a clear trend in the need to increase bandwidth in order to increase the data rate, within the telecommunicat…

  • SPECTRUM SHARING TECHNIQUES FOR BEYOND 5G (B5G) AND 6G 3D NETWORKS (ARTES 4.0 SPL 5G/6G 3A.185)

    The objective of the activity is to investigate and develop spectrum reuse and sharing techniques for integrated NTN-TN 3D networksthat allow them to pool, share, and rapidly reallocate spectrum on demand among their heterogeneous components/segments. The techniques will be prototyped in a testbed to be implemented as part of the activity.Targeted improvements:Enabling spectrum reuse and sharing in integrated NTN-NT 3D networks.Description:Spe…

  • KU AND KA DUAL-BAND TRANSMIT ACTIVE PHASED ARRAY (ARTES AT 5B.236)

    The objective of this activity is to design, develop and test enabling technologies for multi-frequency transmit active antennas. This will include antenna radiating elements, beamforming techniques (analogue vs hybrid), active elements customised in order to cover both the Ku and Ka transmit frequency bands, integrated into a breadboard. Targeted Improvements: Enabling dual Ku and Ka-band transmit active phased arrays. Description: Active ant…

  • PIONEER PARTNERSHIP PROJECTS (PIONEER 4.0) - OPEN CALL FOR PROPOSAL

    The Pioneer programme, implemented under the ARTES 4.0 Generic Programme Line "Partnership Projects", aims to supports the emergence of Space Mission Providers (SMPs), i.e. commercial entities interested in becoming one-stop-shop service providers for public and private customers. The Open Call for proposals is aimed to offer the opportunity for new companies from across all ESA member statesto participate in the programme. It will b…

  • OPTIMISED VIRTUAL PRIVATE NETWORKS FOR CONSTELLATIONS (LEO, MEO, OR MULTI-ORBIT) AND GEO SPACE NETWORKS ( ARTES 4.0 SPL 4S 3D.031)

    The objectives of this activity are to design, develop and test techniques enabling integration of existing and new VPN solutions suitable for space networks (LEO constellation, MEO constellation or GEO) for the purpose of comparison, performance evaluation and optimisation, while maintaining compatibility with terrestrial networks.

  • RELIABLE SIMPLE ELECTRICAL INSULATION FOR SATCOM PLATFORMS (ARTES AT 4F.172)

    The objective of the activity is to test electrical insulation methods to replace reliable electrical insulation by reliable simpleelectrical insulation and to provide inputs to guidelines to ECSS-E-ST-20C Rev2.Targeted Improvements:Mass, volume, manufacturing time reduced by a factor of 2 compared to current reliable insulation technologies.Description: Double insulation rules lead tooversize electrical architectures to make them robust to s…

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT : DEMONSTRATION OF RELIABLE HIGH DATA RATE OPTICAL LINKS UNDER STRONG ATMOSPHERIC TURBULENCE CONDITIONS (3B.042 / SL.015)

    Objective:The objective of this activity is to demonstrate reliable high data rate optical transmission through the atmosphere (>100Gbps) in a scenario representative (in terms of link attenuation and optical turbulence) of an optical link between a telecom satellite and an Optical Ground Station for elevation angles down to 5deg. Targeted Improvements:Improve the service quality and availability of high data rate optical links through the…

  • KA-BAND RADIO FREQUENCY FRONT-END RESISTANT TO INTENTIONAL INTERFERENCE FOR SECURE TTC (ARTES 4.0 4S SPL 4G.041)

    The objective of the activity is to design, manufacture and test a Scaled Engineering Model of rugged Ka-band RF front-end for secure TTC applications that will enable technologies for mitigation of intentional interference. Targeted Improvements: Ability to operate under severe Radio Frequency Interference. Description: TTC is a key equipment for all satellites since it provides the umbilical cord to the control station(s). It has to operate…

  • DUAL BAND KU- AND KA-BAND POWER AMPLIFIER FOR FUTURE FLEXIBLE PAYLOADS (ARTES AT 5C.515)

    The objective of the activity is to design, manufacture and test an engineering model of a multi-band (Ku and Ka-band) integrated power amplifier for application in Lower Earth Orbit satellites, enabling seamless flexibility and reconfigurability for active antenna arrays. Targeted Improvements: Enabling technology for seamless Ku- and Ka-band flexible payloads:- reduces mass and volume by 50%,- improves reliability, bill of material and quali…

  • SOFTWARE DEFINED NETWORKING-BASED SOLUTIONS FOR EFFICIENT DISTRIBUTED DENIAL OF SERVICES PROTECTION OF 5G NON TERRESTRIAL NETWORKS (ARTES 4.0 SPL 4S 3D.027)

    The objective of this activity is to identify+ develop and test Software Defined Networking (SDN) based solutions for 5G Core Network (CN)+ capable of addressing efficiently and effectively Distributed Denial of Services (DDoS) attacks against 5G Non-Terrestrial Networks. This activity will develop a testbed of SDN implementation for 5G CN to test protection mechanisms against various attack scenarios for relevant 5G NTN use cases+ and study t…

  • END-TO-END ADAPTIVE OPTICS BI-DIRECTIONAL MODELLING TOOL FOR OPTICAL FEEDER LINKS (ARTES 4.0 SL SPL 6C.035) - EXPRO+

    Objective: This activity aims at developing a modular software tool allowing to simulate the improvement from employing adaptive optics (AO) systems in bidirectional optical ground station (OGS) to satellites optical communication and quantum links scenarios (e.g. GEO, LEO, MEO). Targeted Improvements: 50% improvement of design time and computation time to dimension optical communication systems operating through atmospheric turbulence enhance…

  • MASS MEMORY UNIT WITH 100 GIGABIT PER SECOND WRITE RATE CLASS FOR LOW EARTH ORBIT COMMUNICATION APPLICATIONS (ARTES AT 5C.498) (ON DELEGATION REQUEST)

    The objective of this activity is to design, manufacture and test a memory unit breadboard offering interface port and memory read and write speeds at 100 GigaBit per second and a capacity of at least 3 TeraBits for interconnected constellation telecommunication systems. Targeted Improvements: Improvement of the write speed by a factor of 10 compared to FLASH-based mass memories. Description:Future Low Earth Orbit (LEO) constellations with hig…